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Summary

We have developed by means of support from NASA Grant NSG-1442 a novel and powerful

technique particularly appropriate for the detection of errors caused by transient faults in computer

systems. The technique can be implemented in either software or hardware; the research conducted

thus far primarily has considered software implementations. The error detection technique we have

developed has the distinct advantage of having provably complete coverage of all errors caused by
transient faults that affect the output produced by the execution of a program. In other words, the

technique does not have to be tuned to a particular error model to enhance error coverage. Also,

the correctness of the technique can be formally verified.

When implemented in software, this new technique uses time and software redundancy and can
be outlined as follows. In the initial phase, a program is run to solve a problem and store the ::

result. In addition, this program leaves behind a trail of data which we call a certification trail. In

the second phase, another program is run which solves the original problem again. This program,

however, has access to the certification trail left by the first program. Because of the availability

of the certification trail, the second phase can be performed by a less complex program and can

execute more quickly. In the final phase, the two results are compared and if they agree the results

are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is

that the second program must always generate either an error indication or a correct output even
when the certification trail it receives from the first program is incorrect. We have formalized the =

certification trail approach to fault tolerance and have illustrated numerous realizations of it for

well-know and important problems. We have rigorously proven the correctness of the technique

for certain applications. We have shown cases in which the second phase can be run concurrently
with the first and act as a real-time monitor. We have compared the certification trail approach

to other approaches to error detection to demonstrate the significant conceptual and performance

advantages.
This research has developed the foundation for an effective, low-overhead, software-based cer-

tification trail approach to real-time error detection resulting from transient fault phenomena. It

would be particularly appropriate at this time to examine the technique further in the context

of important and timely applications. For example, transient error phenomena caused by ioniz-

ing radiations in space or hlgh-altltude avionics environments stand as a major obstacle to many
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applications of high performance microelectronics. The research reported in the following would

provide a framework for the development of "radlation-hardened software" that would permit the

utilization of high performance microelectronics in space and high-altltude avionics applications in

an efficient and cost effective manner.

In the following, seven papers are provided which together characteriie the current state of the

most recent research conducted with support from NASA Grant NSG-1442:

1. Certification of Computational Results, Gregory F. Sullivan, Dwight S. Wilson, Gerald M.

Masson.

1

1

1

J

,

Ezperimental Evaluation of the Certification-Trail Method, Gregory F. Sullivan, Dwight S.

Wilson, Gerald M. Masson, Mamoru Itoh, Warren W. Smith, Jonathan S. Kay.

Certification Trail.s and Software Design for Testability, Gregory F. Sullivan, Dwight S. Wil-

son, Gerald M. Mssson.

Ezperimental Evaluation of Certification Trails using Abstract Data Type Validation, Dwight

S. Wilson, Gregory F. Sullivan, Gerald M. Mssson.

United States Patent, Method and Apparatus for Fault Tolerance, Patent No. 5,243,607, Sept.

7, 1993, United States Patent Office.

Using Certification Trails to Achieve Software Fault Tolerance, Gregory F. Sullivan, Gerald

M. Masson.

7. Certification Trails for Data Structures, Gregory F. Sullivan, Gerald M. Masson.
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Figure 1: Certification trail method.
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the software in addition to those caused by transient hardware faults and utilizes both time and

software redundancy. Errors caused by software faults are detected whenever the independently

written programs do not generate coincident errors.

A significant drawbaf_k to the above approaches is the overhead required. Either extra time

is required to run the algorithms serially on a singJe processor or extra hardware is required to

run them in parallel. The technique we will describe is designed to achieve similar types of error

detection capabilities while reducing the required resource overhea_l. The central idea, as illustrated

in Figure I, is to modify the first algorithm so that it leaves behind a trail of data which we call a

certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are

compared and are considered correct only if they agree. Note, however, that we must be carefui in

defining this method or else its error detection capability might be reduced by the introduction of

data dependency between the two algorithm executions. For example, suppose the first algorithm

execution contains an error which causes an incorrect output and an incorrect trail of data to be

generated. Further suppose that no error occurs during the execution of the second algorithm. It

appears possible that the execution of the second algorithm might use the incorrect trail to generate

an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,

we can regard the two executions as "adversaries. _ The second execution must guard against an

incorrect certification trail "fooling" it into producing an incorrect output. The definitions we give

below exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the

domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of

solutions) for the problem. We say an algorithm A solves a problem P itf for all d E D when d is

input to A then an s E S is output such that (d, s) E P.
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Definition 2.2 Let P : D --* S be a problem. A solution to this problem using a certification

trail consists of two functions Fl and F2 with the following domains and ranges F1 : D -. S x T

and F2 : D x T ---, S U {error}. T is the set of certification trails. The functions must satisfy the

following two properties:

(I) foralld E D thereexistss E S and thereexistst E T such that

Fl(d) = (s,t) and F2(d,t) = s and (d,s) e P

(2) for all d E D and for all t E T

either (F2(d,t) = s and (d,s)E P)or F2(d,t) = error.

-- We also require that F1 and F2 be implemented so that they map elements not in their respective

domains to the error symbol. The definitions above assure that the error detection capability of

the certification trail approach is comparable to that obtained with the simple time redundancy

"- approach discussed earlier. (That is, if transient hardware faults occur during only one of the
executions then either an error will be detected or the output will be correct.) It should be further

_ noted, however, that the examples to be considered will indicate that this approach can also save
;-- overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-

-- version programming, separate teams can write the algorithms for the first and second executions.

-- Note that the specification now must include precise information describing the generation and

use of the certification trail. Because of the additional data available to the second execution,

._ the specifications of the two phases can be very different; similarly, the two algorithms used to

ms implement the phases can be very different. (This will be illustrated in the convex hull example to

be considered later.) Alternatively, the two algorithms can be very similar, differing only in data

structure manipulations. (This will be illustrated in the shortest path example to be considered

"= later.) When significantly different algorithms axe used, the probability that both algorithms will

contain or be affected by faults which generate matching errors should be reduced. When very

similar algorithms axe used it is sometimes possible to save programming effort by sharing program

-- code. For example, the code implementing any data structures needed by the program might be

different, while the code that uses the data structure operations would be the same. This approach
_ is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the

ability to detect errors in the software it does not change the ability to detect transient hardware

errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps

_ even probable) that the majority of software errors will be in the data structure implementation.

Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-
_

ever, it is clearly possible to implement the method with assistance from dedicated hardware. It

"--_ is also possible to generalize the basic idea we have suggested. We discuss some of these gener-

Mizations in a later section. Finally, we note that a wide variety of approaches to software fault
tolerance have been proposed and we contrast our method to the most closely related ideas in a

m later section.

In the following two sections we illustrate the application of certification trails to three wen-

known and significant problems in computer science: the convex hull problem, sorting, and the

_- shortest path problem. It should be stressed that the certification trail is not limited to these

problems. Rather, these algorithms have been selected for illustrative purposes.
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3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail

solution is based on a solution due to Graham [13] called Graham's Scan. For basic definitions in

computationM geometry see the text of Preparata and Shamos [20]. This text also illustrates some

statistical applications of convex hull computations. For simplicity in the following discussion we

will assume the points are in so called general position, i.e., no three points are co-linear. It is not
difficult to remove this restriction.

Definition 3.1 The convez hull of a set of N points, S, in the Euclidean plane is defined as the

smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a

subset of the points in S. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-

ion. Sometimes it is necessaxy for the algorithm to "backup" the construction by throwing some

vertices out and then continuing. The first step of the algorithm selects the point with minimum

x-coordlnate (using minimum y-coordlnate to break ties), and calls it l_. For eax.h other point q

in S we compute the slope of the line/hq. Sort the points of S (except for pl) by this slope (since

the points are in general position, the slopes are distinct). Number these vertices P2,P3,...,PN.

It is not hard to show that after these three steps the points when taken in order, Pl,_,...,p,_,

form & simple polygon; although this polygon might not be convex. It is possible to think of the

algorithm as removing points from this simple polygon until it becomes convex. This code below

performs this by "walking" through the vertices in order. The main FOR loop iteration adds points

to the polygon under construction. After a point is a_lded, the inner WHILE loop checks the angle

formed by the addition of this point. (Note: We measure angles as follows: Given the three points

q,a-l,q,n,p_ we measure the angle from q,n-lqm to q,,_p_ in the clockwise direction.) If the angle

is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding

point on the polygon) is removed. Note that this will change the preceding angle, which may

now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is

encountered. Figure 2 illustrates the construction of a convex hull using this algorithm, from the
hull.

When the main FOR loop is complete the convex hull has been constructed.

Algorithm CONVEXHULL(S)

Input: Set of points, S, in R2

Output: Counterclockwise sequence of points in R 2 which define convex hull of S

1 Let Pl be the point with the smallest x coordinate (and smallest y to break ties)

2 For each point p (except pl) calculate the slope of the line through Pl and p

3 Sort the points (except Pl) from the smallest slope to the largest.

Call them p2,...,p,_

4 ql :=Pl; q2:=p2; q3:=p3; m=3
5 FOR k = 4 to n DO

6 WHILE the angle formed by q,_-l,q_,pk is > 180 degrees DO
7 m:=m-1

8 END WHILE

9 m:=m+l

10 q,. := Pk
1! END FOR

12 FOR i = 1 to m DO, OUTPUT(q_) END FOR

4
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Figure 2: Convex hul] example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property

that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in 3"containing the eliminated point.

Theorem 3.2 Let p, a, b, and c, be points in the plane such that no three are co-linear, p has the

smallest z-coordinate of the four points (and the smaller y-coordinate if another other point has the

same z-coordinate) slope(_) < slope(T ) < slopc(_). If the angle abc is obtuse [measured in the

clockwist _ direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays

-- fa and pT:. Note that the line segments pa and pc axe in the half plain z _>Pz, and in at least one

case the inequality is strict, since no three points axe co-linear. This impLies that the angle apc (in

the clockwise direction) must be greater than 180 degrees. Since the angle abc is also obtuse, both

p and b must be on the same side of line _. Therefore, b is inside the triangle pac. [

_ _ Corollary 3.3 During ezecution of CONVEXHULL, if, after adding Pk, the angle formed by
m

q,,L-t,q,,_,P_ is obtuse [measured in the clockwise direction), then q,,_ is contained in the triangle
lh , q,,,- _, P_.

m

ram.

n
u

Proof: slopc(_) < slope(p--i_) < slopcOh'--'_). |
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In the first execution the code CONVEXHULL is used. The certification trail is generated by

adding an output statement within the WHILE loop. Specifically, if an angle greater than 180

degrees is found in the WHILE loop test then the 4-tuple consisting ofq,n,q,n-l,l_,p_ is output to

the certification trail. The table below shows the 4-tuples of points that would be output by the

algorithm when run on the example in Figure 2. The points in the table axe given the same names

as in Figure 2. The final convex hull points ql,-..,qm axe also output to the certification trail.

Finally, the trail output does not consist of the _tual points in R 2. Instead, it consists of indices

to the original input data. This means if the original data consists of sl, s2,..., s,L then rather than

output the element in R 2 corresponding to si the number i is output. If point coordinates were

output instead of these indices, the second execution world have to verify that the points on the
trail axe members of S.

Point not on convex hull Three surrounding points

p3 P4,PhP2

Ps Ps,Pl,P4

Pr Ps, Pl,Ps

Second execution: Let the certification trail consist of a set of 4-tuples, (Zl, al, bl, ct), (z2, a2, b2, c_),

• .., (z_,a_,b,,c,) followed by the supposed convex hull, ql,q2,...,qm. The code for CONVEX-

HULL is not used in this execution. Indeed, the algorithm performed is dramatically different than
CONVEXHULL.

It consists of five checks on the trail data..

i. That there is a one to one correspondence between the input points and the points in

{zl,...,z_) U (ql,-..,qm)-

ii. That for i E {1,...,r), a_, bi, and c_ axe among the input points.

iii. For i E {1,...,r} that z_ lies within the triangle defined by ai,bs, and ci.

iv. That for each triple of counterclockwise consecutive points on the supposed convex huLl the

angle formed by the points is acute.

V. That there is a unique point among the points on the supposed convex hull which is a locally

maximal point. We say a point q on the hull is a local mazimum point if its predecessor in the

counterclockwise ordering has a strictly smaller y coordinate and its successor in the ordering
has a smaller or equal y coordinate.

Ifany of thesechecks failthen executionhaltsand "error"isoutput. As mentioned above, the

traildata actuallyconsistsof indicesintothe input data. This does not unduly complicate the

checks above;in factitmakes iteasierto verifythe firstand second conditions.

Time complexity: In the first execution the sorting of the input points takes O(n log(n)) time

where n is the number of input points. One can show that this cost dominates and the overall

complexity is O(n log(n)).

It is possible to implement the second execution so that all five checks axe done in O(n) time.

Because indices into the input data axe used, the first condition can be checked by verifying that

each index is used exactly once, and that all indices axe between 1 and N. The second condition

may checked simply by verifying that each index is between 1 and b r. Checking that a point lies

6
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within a triangle is a geometric calculation that can be clone in constant time. Checking that the

angle formed by three points is acute requires only constant time. The third and fourth checks can

be done in O(n) because the certification trail contains indices into the input data as described

above. The uniqueness of the "local maximum" requires only a constant time calculation at each

point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trail solution for the convex

hull problem. Although the definition is phrased in terms of functions, not algorithms, we can

simply define the functions Fl(d) and F2(d, t) on particular arguments as the values computed by
the associated algorithms.

Using our formal definition of certification trails, let D be the set of all finite planar point sets

T. Let S be the set of convex polygons, with vertices in counterclockwise order (the restriction to

counterclockwise ordering makes the convex hull unique). Then the problem we axe considering is

HULL : D ---, S where HULL(T) is the polygon in S that forms the convex hull of T.

The description of the algorithms above defines functions Fl and F2. We must show that both

conditions of Definition 2.2 hold. The following two lemmas, which we state without proof, are

required.

Lemma 3.4 Let P be a polygon on n points Pl, _,..., p,,. P is a convez polygon iff P is simple

and each angle pipjp_ is less than or equal to 180 degrees, where i is in 1, 2, ...n, j = (i + 1) rood n,
and k = ( i + 2) rood n.

Lernrna 3.5 If P is a non-simple polygon, then either P has more than one local mazima, or the

interior angle at some vertez is greater than 180 de@tees.

Theorem 3.6 Fl(d) and F2(d, t), as defined above, constitute a certification trail solution for the
problem HULL.

Proof: We must prove that both conditions of Definition 2.2 axe satisfied by these functions.
-- Part 1: Recall that the first condition is: for all d E D there exists s E S and t E T such

that Fl(d) = (s, t) and F2(d, t) = s and (d, s) E P. Intuitively, this means that if both executions

perform correctly, then they will both output the convex hull of the input, which is unique. Note

-- that generation of the certification trail does not aaCt'ectthe output of the Graham Scan algorithm.

Thus the condition on F1 (d) is satisfied by the correctness of the Graham Scan algorithm, the proof
of which is well known [20]. To show that F2(d, t) = .s, note that a copy of s is contained on the

trail t. Our description of F_(d, t) states that s is output unless one of the five checks above fails.

It is trivial to verify that the first three of these checks must be satisfied. The fourth check cannot

__ fail, since the polygon described by s is convex (because (d, s) E P). Similarly, if the fifth check

"- fails, then the polygon described by s has two local maxima, and this is not possible for a convex

polygon.

Part 2: The second condition is: forMldEDalltETeJther(F2(d,t)=sand(d,s)EP)or

-- F2(d, t) = error. Intuitively, this means that given an input and arbitrary trail, F2(d, t) produces a

solution to the problem or flags an error. Our definition of F2(d, t) states that the polygon Q stored
on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all

-- five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of

the points d. The first condition guarantees that every point in d is dasshqed as a hull point or an

a
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interior point. The second condition guarantees that the triangles used to identify interior points

are formed from input points, and the third check verifies that the interior points are indeed inside

their respective triangles. Note that we do not attempt to verify that the triangles on the trail are

the ones that would be produced by El(d). In general, for a given interior point, there may be

several triangles of input points in which it is contained. Together, the first three conditions imply

that all points in fir axe also in Q, since it is impossible for a hull point to be contained in a triangle.

Note that these three checks do not exclude the possibility that interior points are present in Q,
nor do they guaxantee that the ordering of the hull points in Q is correct. The final two checks

will accomplish this. If the last two checks are satisfied, Lemma 3.5 states that Q is simple, and
therefore it must be convex by Lemma 3.4.

Thus, Q is a convex polygon whose vertex set is a superset of the vertices of fir, i.e., fir is

contained in Q. This implies that no other point from the input set may be a vertex of Q, since any

input point that is not a hull point is interior to/it and therefore interior to Q. Finally, it is clear

that the ordering of the vertices of Q and H must be the saJne (although there might appear to

be two possible orderings, clockwise and counterclockwise, a do&wise ordering will fail the fourth

check). Therefore if all five checks succeed, then the output of F2(d, t) will be the convex hull of d.

This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
therefore a certification trail solution to the convex hull problem. |

3.2 Other convex hull algorithms

It is possible to use this technique to provide certification trails for other convex huU algorithms.

The key is that for each non-hull point p we must find a triangle of input points (not necessarily hull

points), containing p. For some convex hull algorithms, a containing triangle is available directly or

can be easily computed when it is determined that a particular point is not on the huU. However,

this is not true of all convex hull algorithms. If, however, we allow extra overhead during the first

execution we may apply this technique to any planar convex hull algorithm, provided that the
output is a polygon and not merely an unordered list of hull vertices.

Let H = ql, q2, q3..., qh be the convex hull of a set of r_ points. We label the points so that q_ is

the point with smallest abscissae (and smallest ordinate in case of a tie). Since fir is convex, the

remaining points occur in sorted angular order around ql. Now for each non-hull point p, we may

determine which triangle thPiP_+l it lies in with a binary search. Thus we may determine containing
triangles for the non-huU points in O(nlogh) time. Under several distributions the number of hull

points is much smaller than the number of input points [20] so this overhead will often be quite
small.

4 Sorting

Sorting is one of the most important basic problems in computer science. There is a massive body

of literature discussing sorting and a significant fraction of computer time is spent performing sort
operations. We will see how the certification trail approach may be applied to this problem. Assume

that a particular sorting algorithm takes as input an array of r_ dements and outputs an array of
r, elements. The algorithm is supposed to place the data into non-decreasing order.

Note that it may not appear necessary to use a certification trail for this problem. It might seem

that all that is required is to verify that the output is in non-decreasing order. Unfortunately, this

is not sufficient and we must also verify that the output consists of the same dements as the input.
A certification trail is required to perform this check efficiently.
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The information placed on the trail is a permutation relating the input and output arrays. This

permutation is created by adding an Item Number field to the elements being sorted, such that the

/-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements

in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check

that the the information on the certification trail actually is a permutation of n elements, i.e., each

number from I to n occurs exactly once. Should any of these checks fail, the second algorithm

outputs "error", otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex

hull problem. In the latter case, the certification trail was constructed for a particular algorithm,

and the code executing that algorithm modified to produce the trail In this case, the sorting

algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the

necessary information extracted by a postprocessing step. Thus this technique may be implemented

as a "wrapper" around existing sort routines, no matter which algorithm is implemented.
Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-

decreasing sequences of integers. Let P : D --, S be the sorting problem, i.e., (d, s) E P iff s is a

permutation of d (by definition of S, s is a non-decreasing sequence). Note that for every d E D,

there is a unique s E S such that (d, s) E P. Let T consist of finite sequences of integers. For z a

member of any of the sets D, S, or T, we will also denote the sequence of integers by zl, z2, ..., ZN.

Definition 4.2 The function Fl : D ---, S x T is defined as follows. Given an input sequence d

of N integers, Fl(d) = (s,t) where s is the unique element of S such that, (d,s) E P and t is a

permutation of 1,2,3,...,N s.t., si = dr, for all i = 1, 2, ...N. Note that unless d consists of N distinct

integers, there will be more than one possible t. The t produced by Fl(d) may he chosen arbitrarily.
Since for every d E D, there exists a unique s E S with (d, s) E P, the function $'1 is well defined.

Definition 4.3 The function F2 :DxT --. SU{error} is defined as follows. F2(d, t) = dt_, dr2, ..., dtN
(where d consists of N integers) iff

i. t contains at least N integers.

ii. The first N integers of t are a permutation of (1,2, ...N).

iii. dr, _< dt,+_ for i = 1,2,...,N- 1.

Otherwise, F2(d,t) = error. Note that though t may contain more than N integers, F2(d,t)
depends only on the first N.

The definitions of the functions $'i and and F2 correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 Fl and F2 are a certification trail solution to the sorting problem P.

9



Proof: Wemust prove that both conditions of Definition 2.2 are satisfied by these functions.

-- Part 1: WemustprovethatforalldEDtheree)dstssESandtETsuchthatF1(d)=(s,t)

and F2(d,t) = s and (d,s) E P. If Ft(d) = (s,t), then by definition (d,s) E P. We must show

i _ that F2(d, t) = s. t is a permutation of {I, 2, ..., N }, so the first two conditions of Definition 4.3 are

satisfied. Furthermore, by Definition 4.2, dr, = si for i -- I, 2, ...N. Since s E S, it is a nondecreasing

sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore F2(d, t) = s.

r_ Part 2: We must show that for alldE Dandallt E Teither (F2(d,t)=sand (d,s) E P)

-- or F_(d, t) = error. Pick d E D with length N. Pick t E T. The interesting case is when t is a

permutation of {1, 2, ..., N}. If not, then either the first N integers of t are not such a permutation,

_ in which case F2(d, t) = error. We may ignore the possibility that t consists of such a permutation

-- followed by more integers, since F2 depends only on the first N integers of t.

Examine the sequence dtt, dr2,,, dtst. If there is an i such that dr, > dti+l then the third condition
o- of Definition 4.3 is violated so F2(d,t) = error. Otherwise F2(d,t) = dtl,dt_,...,dtt,. Furthermore,

-- this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation

of d, (d, F2( d, t).) E P.

Therefore, both conditions of Definition 2.2 are satisfied, so FI and Fz constitute a certification= =

"= trail solution to sorting. I

Note that we defined T as the set of all finite sequences of integers. We could have instead defined

[] T as the set of permutations of {1, 2, ...N} for all positive N. This would make the function F2

"simpler", in that it doesn't have to verify that that certification trail consists of a permutation (it

would, however, have to verify that it consists of a permutation of the correct size). In this case,

checking that the trail t is indeed a permuation (i.e., actually in its domain) would be left to the
implementation of the function.

W

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Our approach is applied to

-" a variant of the Dijkstra algorithm [11] as explicated in [10]. First we require some preliminary
definitions.

[d

: =

i

H

Definition 5.1 A graph G = (g, E) consists of a vertez set V and an edge set E. An edge is an

unordered pair of distinct vertices which we notate with the following style: [v, w] and we say v is

adjacent to w. A path in a graph from v_ to vk is a sequence of vertices v_,_,...,vl, such that

[v,,vi+l] is an edge for i E {1,...,k - 1}. Let w be a real function defined on E. The length of a

path from vl to v_ is the sum of w([vl, vi+l]) for each edge [vi, vi+l] in the path.

Let G = (t', E) be a graph and let w be a positive rational valued function defined on E. Given

a vertex v_ in V, find a set of shortest paths from v_ to each other vertex in V. Note that since w

is positive on all edges, a shortest path must exist between any two vertices, though it need not be
U unique.

Before we discuss the algorithm we must describe the properties of the prindpal data structure

that are required. Since many different data structures can be used to implement the algorithm, we
initially describe abstractly the data that can be stored by the data structure and the operations

that can be used to manipulate this data. The data consists of a set of ordered pairs. The first
element in these ordered pairs is referred to as the item number and the second element is called

the item value or just va/ue. Ordered pairs may be added and removed from the set, however, at

all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

m
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multiple ordered pairs to have the same item value. In this paper the item numbers are integers

between I and n, inclusive. Our default convention is that i is an item number, z is a value and

h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographicaUy

as follows: (i, x) < (i', z') iff x < z' or (z = z' and i < i'). Our data structure should support a

subset of the following operations.

member( i, h) returns a boolean value of true if h contains an ordered pair with item number i,
otherwise returns false.

insert(i, x, h) adds the ordered pair (i, z) to the set h.

delete(i, h) deletes the unique ordered pair with item number i from h.

changekey(i, z, h) is executed only when there is an ordered pair with item number i in h. This

pair is replaced by (i, z).

deletemin(h) returns the ordered pair which is smallest according to the total order defined above

and deletes this pair. If h is the empty set then the token "empty" is returned.

predecessor(i, h) returns the item number of the ordered pair which immediately precedes the pair

with item number i in the total order. If there is no predecessor then the token "smallest" is
returned.

A description such as the one above describes an abstract data type. There may be several

possible implementations for a particular ADT. In our solution, different ADT implementations

will be used for the two executions. The first implementation will produce a certification trail

allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.

Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm

on a sample graph. Table 1 records the data structure operations performed when the algorithm

is run on the sample graph. The first column gives the operations, with the parameter h omitted

to reduce clutter. Member operations are also omitted from the table. 'The second column gives

contents of h after the execution of each instruction. The third column records the order pair

deleted by deletemin operations. The fourth column records the information (if any) output to the

certification trail by this operation.

This certification trail is created by modifying the insert(i, z, h) and changekey(i, z, h) operations
performed during the first execution. The modified instructions perform the same operations

described above and in addition output the following information to the certification trail.

insert(i,z, h) Output the item number of the predecessor of (i, z) (as defined above) to the trail.

If there is no predecessor, output the token "smallest". Note that depending on the data

structure implementation, the predecessor may already be computed during insertion or may

require a separate call to the predecessor(i, h) operation.

changekey(i,z, h) Output the predecessor of the ordered pair (i,z) (i.e., pair resulting from the

change) to the trail. If there is no predecessor, output the token "smallest" to the trail.

We shall see that this information allows a faster and simpler data structure implementation to be

used for our second algorithm.

The algorithm proceeds by maintaining a set ..q of vertices for which shortest path lengths are

known, and a "frontier" set F of vertices adjacent to members of S along with the best known path

11
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lengthfrom vl. At each step,we findthe vertexv in F with smallestknown path lengthand place

itin S, F isthen updated by examining the neighborsof v. New verticesmay be added to F or a

shorterpath (passingthrough v) may be found to existingverticesin F.

To ei_cientlyfind the vertexto add to S, the Mgorithm uses the data structureoperations

describedabove. As soon as a vertexv isadjacentto some vertexu in S, itisinsertedin the set

F. The v_.luefor v isthe shortestknown path to v, which isthe valueof u (shortestpath to u)

plus the weight of edge vw. The arrayelement prefer(v)isused to keep trackof this"best"edge

connecting v to S. As the treegrows,informationisupdated by operationssuch as insert(i,z,h)

and changekey(i,z,h). The deletemin(h)operationisused to selectthe next vertexto add to the

span of the currenttree.Note,the algorithmdoes not expUcitlystorepaths. Implicitly,however,

if(v,z) isreturned by deletemin,then prefer(v)indicatesthe predecessorof v on the shortestpath

from vl.

Algorithm SHORTEST- PATH(G,vl ,weight)

Input:Connected graph G = (V,E) where V = {I,...,n)with edge weights.

Output: Lengths ofshortestpaths from _ to allother vertices.

I FOR ALL u E I/,u) := oo END FOR

2 _I) := 0

3 F:= t_;

4 WHILEF_0DO

5 (v,k) :- deletemin(F)

6 FOR EACH iv,w] E E DO

7 IF v)+ weight(iv,w]) < w) THEN

8 w) := v) + weight(Iv, w]); prefer(w) := v

9 IF member(w, F) THEN changekey(w,w), F)

I0 ELSE insert(w,w),F) END IF

Ii END IF

12 END FOR

13 END WHILE

14 FOR ALL u E V - {v_),OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that thiscode may be easilymodifiedto output the shortestpaths as wellas theirlengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data

type is implemented with a balanced search tree such as an AVL tree [1], a red-bla_:k tree [14], or

a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains
two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered

pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered

pairs in h and is based on the total order described earlier. For each item number i, the InSet field

of the i-th array element is true if a_d only if there is a pair with item number i in the set. The

Value field of the i-th array element stores the value of the pair with item number i, if there is one

in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of

operations such as member(i, h) and delete(i, h).
Second execution: This execution also uses the SHORTEST-PATH code, however, a different

data structure is used to implement the ADT. We call this data structure an indezed linked list

and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed

from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12
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Operation Set of Ordered Pairs Delete Trail

insert(2,50) (2,50) smallest

insert(3,60) (2,50 ),(3,60) 2
deletemin (3,60) (2,50)

insert(4,130) (3,60),(4,130) 3

insert(5,62) (3,60),(5,62),(4,130) 3

deletemin (5,62),(4,130) (3,60)

changekey(4,103) (5,62),(4,103) 5

deleternin (4,130) (5,62)

changekey(4,94) (4,94) smallest

insert(6,72) (6,72),(4,94) smallest

delete n (4,94) (6,72)
deletemin (4,94)

deletemin empty

u

w
Table 1: Example of operations and trail.
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each element in the llst contains a data field storing an ordered pair. The first element stores a

special ordered pair (0, "smallest #) which is guaranteed to compare less than any other ordered

pair. The list is maintained in sorted order based on the total ordering defined above for ordered

pairs. This list represents the contents of the set h. The i-th element of the array points to the node

containing the ordered pair with item number i, if such an element is present in h. Otherwise the

pointer is nil. The 0-th element of the array points to the node containing (0, "smallest _) Initially,

all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(h)
operations quickly. The array provides rapid random access to the elements. We now describe the

implementation of the data structure operations.

insert(i,z, h) Read the next value from the certification trail. This value, call it j, is the item

number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To

insert this element, we follow the j-th array pointer to the list node containing the pair (j, y).

There is one special case, if "smallest" is read from the trail rather than an item number,

we follow the 0-th pointer. A new node is allocated and inserted into the list just after the

node containing (j, y). The data field of this node is set to (i, z). Finally, the i-th pointer is

set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,

given that the next item on the certification trail is 3. When the insert(i, z, h) operation is
performed, some checks must be conducted:

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be "smallest" or be between I and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be all before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,

if the j-th pointer points to (j, y) and its successor before the insertion (ignoring the

14



specialcase when (j,y) is the lastelement of the list)is(j',y'),then we must have

(j, < (i, z) < (j', ¢).

If any of these checks fails, then the execution halts and "error" is output.

-- delete(i,h) If the i-th pointer is nil, halt execution and output "error". Otherwise follow the i-th

pointer to find the list node containing (i, z). This node is removed from the list. Note that

_ since the list is doubly linked, this is a constant time operation. The i-th pointer is then set
"- to nil. The only condition that must be checked is that the i-th pointer is not nil before the

deletion

_ changekey(i, z, h) To perform this operation, it suffices to perform delete(/, h) followed by insert(i, z, h).

The next item for the certification is read when the insert(/, z, h) operation is performed. If

any of the conditions required by either of these operations fails, then execution halts and
-- "error" is output.

m

=

i

w

h
_=
m

deletemin(h) The 0-th array pointer is traversed to the llst head (which contains (0, "smallest'_)).

The pointer to the next node in the list is followed. If there is no next node then "empty" is

returned. Otherwise, let (i, z) be the pair stored in that node. We remove the node from the

list, set the i-th array element to nil, and return (i, z).

member(i, h) The/-th array pointer is examined. "False" is returned if it is nil, otherwise "true"
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,

but is described for completeness. Follow the i-th pointer to the node containing the pair

(i, z). Follow the pointer from that node to the node preceding it on the list (note that this

node will always exist). If this is the special node (0, %mallest'_, return "smallest", otherwise

return the item number of the pair stored in this list.

,_ There are two variations to this scheme that are worth noting. First, we could implement a

singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the

_ extra pointer. Note, however, that operations such as delete(i, h) require access to predecessors in

order to update the llst quickly. This can be provided by modifying the operations delete(i,h),

changekey(i, z, h), and predecessor(i, h) so that they output predecessor information to the trail.

,_ The other variation also uses a singly linked list but removes the need for extra certification trail

-_ information for delete(i, h) and changekey(i, z, h) operations. It uses the technique of marking a

list node for deletion rather than removing them from the list node immediately (the appropriate

pointer in the array is still set to nil immediately). When performing other operations, we check

,_ for and remove any marked nodes immediately following nodes visited. The total running time is

still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in

O(log(n)) time where IVI = n. There are at most O(m) such operations and O(rn) additional time

overhead where IEI = m. Thus, the first execution can be performed in O(mlog(n)) In addition,

it provides us with a relatively simple and illustrative example of the use of a certification trail.

... In the second execution each data structure operation can be performed in O(1). There are still

at most O(rn) such operations and O(m) additional time overhead. Hence, the second execution

can be performed in O(m) time, i.e., linear time.

-- Section 6 contains results of timing experiments with this technique.
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5.1 Proof of correctness

-- We wish to prove that the two algorithms given above constitute a certification tra_l solution to the

SHORTEST-PATH problem, i.e., that the functions Fl(d) and F2(d, t) defined by these algorithms

satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
"- structure operations.

i

mum

I

Definition 5.2 Let D be the setoffinitesequencesofthe datastructureoperationsdefinedabove.

Let S be the setof finitesequencesof answers to data structureoperations.Let P be the relation

(d,s) where d E D'and s E S, and s is the sequence of answers resultingfrom executingthe

operations d startingwith the empty set.

Note that we are examining all finite sequences of data structure operations, not just "legal"

ones. That is, may attempt to perform an insertion with an item number already in use, attempt

to perform deletion on an item number not being used, etc. We assume that if one of these "illegal"

operations is attempted, the operation will output "error" and terminate processing. Thus, we can
define the answer sequences for these "illegal" sequences.

Definition 5.3 Let Fl(d) be defined by the result of executing the operations on any of the stan-

daxd data structures described above, with the insert(i, z, h) and changekey(i, z, h) operations mod-

ified to output trail information. Let F2(d, t) be defined by the result of executing the operations
using the indexed linked list implementation described above.

Theorem 5.4 Fl(d) and F2(d, t) meet the conditions of Definition _.2 (that is, Fl(d) and F2(d, t)

constitute a certification trail solution for P).

7I_ Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

" Part 1: The first condition we must verify is that for all d E D there exists s E S and there

exists t E T such that Fl(d) = (s,t) and F2(d,t) = s and (d,s) E P. Let (s,t) = Fl(d). The

-- modifications of the data structure operations that produce trail output do not affect how the data

-- structure is maintained. Proofs of correctness for the standard data structures are well known, so

we may assume (d, s) E P. We must demonstrate that F2(d, t) = s.

This may be proven by showing that after each operation that modifies the set h, the elements

i stored in the indexed linked list (our implementation) correspond to the elements in the set h (the

abstract definition). We must also demonstrate that if this relationship is maintained, then correct

-- output is generated by operations that generate output.

-- To demonstrate this, we show that each operation maintains the following invariants.

u

i

H
I

i. If the pair (i, z) is in h U (0, "smallestH), then the i-th pointer in the array of pointers points

to the list node containing (i,x).

ii. If, for some i, there is no pair in h with item number i then the i-th pointer is nil.

iii. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,

this implies that it is pointed to by exactly one pointer from the array).

w The first two conditions assert that the indexed linked list and the set h contain the same

U elements (ignoring the special list head element in the linked list). The last two |nvariants allow us

to demonstrate that the linked list operations function correctly.
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Clearly each of these conditions is true before the first operation is performed (the set of pairs

is empty, all pointers except the O-th are nil, and (0, "smallest _t) is the only llst node).

Assume that the above conditions are satisfied after the first k operations, and that the output

generated by any of the first k operations is correct. We claim that the invariants will will remain

satisfied after the (k÷ 1)-st operation, and that if the (k÷ 1)-st operation generates output, it will be

correct. Let s(k ÷ 1)denote the output produced by the (k÷ 1)-st operation (where Fl(d) - (s,t)).

Consider each possible operation. For brevity, we omit details for "illegal" operations, i.e., those

that violate the precondition of the operation. Similarly, we omit details of the special case of

"smallest" being read from the trail.

insert(i, z, h) The trail t contains the item number j of the predecessor of (i, z). Call the predecessor

(j, y). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs

"error" and execution halts. Since the indexed linked list correctly represents h at this point,

this agrees with the result returned by Fl(d), i.e., s(k ÷ 1) = "error n. After the insertion is

performed, the i-th pointer is set to the new node containing (i, z), so the first condition is

satisfied. No other nodes are added to the list, so the second condition will remain true. The

third condition is satisfied since (j, y) is now the immediate predecessor of (i, z). Since no

other pointer in the array has been changed, the fourth condition is still true.

delete(i, h) This operation sets the i-th pointer to nil, and removes the node containing (i, z)

from the list. This satisfies the second invariant. Deleting a node cannot violate the third

invariant. Since no other nodes are removed and no other pointers are changed, the first and
fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum

element in h must correspond to the node following the special list head node, call the pair it

contains (i, z). This pair is the correct output for this operation. As with delete, the above

four conditions remain true after this node is removed and the i-th pointer set to nil.

changekey(i, z, h) We have implemented changekey(i, z, h) as an insertion followed by a deletion.

Since both of those preserve the invariants, changekey(i, z, h) must do so as well.

member(i, h) By assumption, the indexed linked llst correctly represents h before this operation,

so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invari_nts remain satisfied.

predecessor(i, h) By assumption, the indexed link list correctly represents h, and furthermore it is

currently in sorted order. Thus, the list element preceding the node containing (i, z) is the
predecessor. Since this operation changes neither h nor the indexed linked list, the invariants
remain satisfied.

This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d E D and for all t E T either (F2(d,t) = s and

(d, 8) E P) or F_(d, t) -- error. Intuitively, this states that if F2(d, t) is passed an arbitrary trail, it

either outputs a correct answer, or it outputs "error". We prove aa even stronger condition. Let

t_,_e_ be the trail returned by Fl(d), i.e., Fl(d) = (_, t_,_). Then either t_,_ is a prefix of t,
or F2(d, t) = error.

If t_,_ is a prefix of t, then we are done. The algorithm describing F2(d, t) does not examine
any part of the trail after tc_,,¢a, so F2(d,t) = s.
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If tcoTrect is not a prefix of t, let p be the position at which they first differ. Let 0 be the number

of the operation that uses the trail data at p. Then operation 0 is either an insert(i, z, h) or

changekey(i, z, h) operation. If it is an insert operation, then tcorrect contains the item number of

the predecessor of(i, x). Since t contains a different value, call it j, at this location, the insert(i, z, h)

operation will fail one of it's three checks. Either j will not be valid item number, or the j-th

pointer will be nil, or the pair (j,y) will not be the predecessor of (i,z). The argument for the

changekey(i, x, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, Fl(d) and F2(d, t) are a certification trail solution to P, the problem of evaluating

data structure operations. |

Definition 5.5 Let D be the set of finite graphs G = (II, E) with edge weights consisting of positive

integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples

of positive integers. Let P be the relation that associates each graph with the tuple consisting of

the minimum path lengths to each vertex. Let SPI(d) be the function defined by the SHORTEST-

PATH algorithm with the data structure defined for the first execution. Let SP2(d, t) be the function

defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.6 S PI( d) and S P2(d, t) constitute a certification trail solution for P.

Proof: If SPI(d) = (s,t),then the correctnessof Dijkstra'salgorithm impliesthat (d,s) E

P. The algorithms that compute SPI(d) and SP2(d,t) are the same except for data structure

implementation. Theorem 5.4 impliesthat ifthese algorithmsgeneratethe same data structure

operations,then the same sequence of answers willbe generated. Thus, to demonstrate that

SP2(d, t)= s,itmust be shown thatthe same sequence of data structureoperationsisgenerated

by both algorithms. Examination of SHORTEST-PATH indicatesthat the k-th data structure

operationto be performed isdependentonlyon the input and the resultofpreviousdata structure

operations. For example, at line9, eitheran insert(i,z,h) or a changekey(i,z,h) isperformed,

depending on the resultof a member(i,h) operation. The input graph d isidenticalfor both

algorithms,thus the firstdata structureoperationperformed must be the same. Assume that the

firstk operationsperformed by both algorithmsare identical.Then, by Theorem 5.4,the answers

to those operationwillbe the same. Sincethe (k + 1)-stoperationdepends only on the input and

the resultsof the previousk operations,itmust alsobe the same forboth algorithms.Therefore

the same sequence ofdata operationsisperformed in both algorithms,so SP2(d,t)- s.

The proof that the secondconditionholdsisthe same as forTheorem 5.4.Eitherthe input trail

tcontains the "correct"trailas a prefix,or one of the data structureoperationswillfail,resulting

in an "error"output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results

of deletemin(h) are not output nor axe they stored in the certification trail. It might be possible for

incorrect answers to be returned by deletemin(h) operations while still producing correct shortest

paths and lengths. The second execution of the SHORTEST-PATH algorithm win not detect this

since the correct output is produced. By proving that the answers to deletemin(h) operations are

the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, indud-

ing the ones described in this paper. Algorithms for solving these problems were implemented, both
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with and without the use of certification trails. Timing data was collected on both the certification

trail solutions and the basic solutions. The following tables summarize these results.

Size Basic Algorithm

5000 0.61

First Execution

(Also Generates Trail)
0.62

1.34

Second Execution

(UsesTrail)
0.07

0.14

Speedup

8.73

9.56

Percent

Savings

43.62

44.5410000 1.33

25000 3.68 3.68 0.36 10.22 45.12

50000 7.68 7.74 0.71 10.75 44.94

100000 16.23 16.30 1.43 11.35 45.39

200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull
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Size

10000

50060
100000

500000

10O000O

Basic Algorithm

0.28

1.80

3.96

First Execution

(A_so Generates Trail)
0.30

1.90

4.08

Second Execution

(Uses Trail)
0.04

0.19

Speedup

7.00

9.47

9.66

Percent

Savings
39.29

41.94

43.310.41

23.95 24.69 2.14 11.19 43.99

50.23 51.57 4.38 11.47 44.31

Table 3: Sort

m
m

Size Basic Algorithm First Execution Second Execution Speedup Percent

(Also Generates Trail) (Uses Trail) Savings
i00,I'000 0.04 0.05 0.02 2.00 12.50

250,2500 0.15 0.16 0.06 2.50 26.67

500,5000 0.31 0.33 0.II 2.82 29.03

I000,I0000 0.70 0.76 0.23 3.04 29.29

2000,20000 1.58 1.67 0.45 3.51 32.91

2500,25000 2.06 2.15 0.55 3.75 34.47

L..

m

m

Table 4: ShortestPath

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The

system was run as a standaione machine in single user mode during timing experiments.

Much of the data presented in the timing table is essentially self-explanatory relative to the

certification trail technique and algorithms considered. However, a brief discussion of the table

entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the

algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.
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The First Execution column gives the execution time of the algorithm in producing the output

with the additional overhead of generating the certification trail.

The Second Ezeeution column gives the execution time of the algorithm in producing the output

while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary

Execution. One reason this figure is important is that it is possible for the two algorithms to run in

different environments (different hardware, programming language, etc). A high speedup indicates

that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained

by using the certification trail method as compared to 2-version programming approach. The time

required for a 2-version programming approach was estimated by doubling the time reported in the

Basic algorithm. This assumes that both versions take approximately the same amount of time to

execute.

In addition to the tables,the timing information for the convex hullalgorithm isplottedin

Figure 5. Plotsforthe other two examples are similar.

Examination of the data collectedforthe convex hullalgorithmindicatesthat:

• The overhead in generatingthe certificationtrailisvery small,lessthan 25{ of the running

time of the basic(no certificationtrail)algorithm.

• The second executionisveryfast,achievingan order of magnitude speedup forlargerinput

sizes.This suggeststhata single"second algorithm" processcould easilyhandle the output

generated by several"firstalgorithm_ processesrunning in paxMlel. Alternately,the high

speedup would allow the second executionto be run on lower performance (and hence less

expensive) haxdward. Finally,the largespeedup and reduced code complexity may make it

possibleto take advantage of a formM]y verifiablelanguage (which may requiresignificant

overhead) in implementing the second algorithm.

The data for sortingindicatesthat the certificationtrailalsorequiresvery low overhead and

resultsin a largespeedup. For the shortestpath problem the overhead isstillvery low,and the

speedup, while not as dramatic as forthe firsttwo problems,isstillquiterespectable.

7 Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault

detection techniques that have been previously proposed and examined, but in each case there are

significant and fundamental distinctions. These distinctions axe primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the

certification t ra£1.

First consider the important and useful technique called N-version programming [9, 3]. When

using this technique N different implementations of an algorithm axe independently executed with

subsequent comparison of the resulting N outputs. There is no relationship among the executions of

the different versions of the algorithms other than that they all use the same input; each algorithm

is executed independently without any information about the execution of the other algorithms. In

marked contrast, the certification trail approach allows the primary algorithm to generate a trail

of information which can be read by the secondary algorithm. The advantages of utilizing this

additional information are shown in the body of this paper. In effect, N-version programming can

be thought of relative to the certification trail approach aa the employment of a null trail.
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Another valuabletechnique,known as the recovery block approach [2,18,21],was proposed by

Randell. Ituses acceptancetestsand alternativeprocedures to produce what isto be regardedas

a correctoutput from a program. When using recovery blocks,a program isviewed as a being

structured into blocksof operations,which afterexecution yieldoutputs which can be testedin

some inform_l sense for correctness.The rigor,completeness, and natureof the acceptancetest

is leftto the program designer,and many of the acceptance teststhat have been proposed for

use tend to be somewhat straightforward[2].When using certificationtrailsitisclearlypossible

to combine the second executionand the comparison testto yielda program which certifiesthe

correctnessof the output of the firstexecution.Unlike an acceptancetestthiscertifiermust satisfy

strictformal propertiesofcorrectness.Also note that the certificationtrailtechniqueemphasizes

the capabilityof generatingadditionaldata to ease the certifyingprocessand does not relysolely

on data which would normally be computed. It should be possibleto fruitfullycombine the ideas

of recovery blocksand certificationtrails.

Algorithm-based faulttolerance[15,17,19]useserrordetectingand correctingcodesforperform-

ing reliablecomputations with specificaigorithms.This techniqueencodesdata at a highleveland

algorithms are specificallydesignedor modified to operate on encoded data and produce encoded

output data. Algorithm-based faulttoleranceisdistinguishedfrom otherfaulttolerancetechniques

by three characteristics:the encoding of the data used by the algorithm;the modificationof the

algorithm to operate on the encoded data; and the distributionof the computation stepsin the

algorithm among computationalunits.The errordetectioncapabilitiesofthe algorithm-basedfault

toleranceapproach axe directlyrelatedto that of the errorcorrectionencoding utilized.The cer-

tificationtrailapproach does not requirethat the data to be executed be modifiednor that the

fundamental operationsof the algorithmbe changed to account for thesemodifications.Instead,

only a trailindicativeofaspectsof thealgorithm'soperationsmust be generatedby the algorithm.

As seen in Section6,the productionof thistraildoes not add significantoverhead.Moreover,any

combination of computational errorscan be handled.

Recently,Blum and Kannan [6]have definedwhat they calla program checlcer.This interesting

work has been followedby a burstof activityin thisgeneral area [12,7,25, 8,4]. Each of these

papers, however, describeswork which differssignificantlyfrom the work we present.A program

checker is an algorithm which checksthe output of another algorithmforcorrectness.An early

example of a program checkeristhe algorithm developed by Taxjan [23]which takes as input a

graph and a supposed minimum spanning treeand indicateswhether or not the treeactuallyisa

minimum spanning tree.

The Blum-Kannan program checkingmethod differsfrom the certificationtrailmethod in two

important ways. First,the checkerisdesignedto work fora problem and not a specificalgorithm.

That is,the checkerdesignisbased on the input/output specificationofa problem and no assump-

tions axe made about the method beingused to solvethe problem. Because ofthisthe algorithm

which isbeing checked istreatedas a blackbox. It can not be alterednor can itsinternalstatus

be examined and exploited.In the certificationtrailapproach the algorithmbeing checked isnot

treated as a black box. Instead,the algorithmcan be modified to generateadditionalinformation

(i.e.,the certificationtrail)which isconsideredto be usefulinthe checking/verificationprocess.By

exploitingthiscapabilityitissometimes possibleto designcertificationtrailsolutionswhich allow

fasterchecking than Blum-Kannan program checkers.Of course,thesefastersolutionsare more

specializedthan the Blum-Kannan checkerswhich axe guaxanteed towork forany algorithmwhich

solvesthe originalproblem. We believethat the added speed oftenoutweighsthe disadvantageof

specialization.

The second important differenceconcernsthe number oftimes thatthe program which isbeing

checked isexecuted. In the Blum-Kannan approach the program may be invoked a polynomial
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number of times. In the certification trail approach the program is run only once. Thus, the overall

time complexity of the checking process can be significantly larger for Blum-Kannan checkers.Z±

A third less important difference stems from the fact that Blum-Kannan checkers are defined

in a more general probabilistic context. Certification trails are currently defined only for deter-

ministic programs and checkers. However, it is clearly possible to define them in the more general

probabilistic context.

Other work has been done to extend the ideas of Blum-Kannan to give methods which allow

the conversion of some programs into new programs which are seLf-testing and seLf-correcting [12,

7]. However, these methods are also based on treating programs as black boxes and thus have

_ limitations similar to Blum-Kannan program checkers. A recent paper by Blum et al. [8] concerns

_ checking the correctness of memories and data structures. The results described in that paper

differ from our work using abstract data types in one central way. The checkers that they design

- are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data
-., structures of size O(n). Our results do not place space constraints on the algorithm used to certify

the data structure. Without a space constraint we are able to certify abstract data types such as

_ priority queues which are more complex than the data structures that they check, i.e., stacks and

queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast

checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we

propose. Both methods modify original algorithms to yield new algorithms which output additional

information. We refer to this additional information as a certification trail and they refer to this

i_ information as a witness. In our case we are interested in modified algorithms which have the same

D asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be

slowed down by at most a factor of two. In [4] the modified algorithm is slowed down by more than

_ any fixed mnltiplicative factor. Specifically, if the original algorithm has a time complexity of O(T)
ga[] then the modified algorithm has a time complexity of O(TI+_). Note that in practice the _ cannot

be too small because its inverse appears in the exponent of the checker time complexity. Another

difference between our methods is the fact that their method requires that the input and output

-- be encoded using an error-correcting code. The encoding process takes O(N TM) time for strings

of length N. However, many of the checkers we have developed take only linear time so the cost

of simply preparing to use their method appears to be too great in some cases. It is also necessary

to decode the output after the check. Lastly, we note that Fortnow has stated that their result is

currently not practical [24].

H
m 8 Generalization and Future Research Areas

_ The experimental timing data on certification trails indicates that this technique is of great practical

-- value as weLl as of theoretical interest. Furthermore, the techniques illustrated are applicable to a

wide range of problems, especially the certification of Abstract Data Types described in the shortest

path example. There are many areas of interest for future exploration, a few of which are described
i below.

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program

may be used for a variety of problems. Since the certification trail is produced and used by abstract

data type operations, the technique may be used with any algorithm that can be implemented in

terms of those abstract data types. Creating a library of such "certified data types * enables
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programmers to createfaulttolerantprograms without having to be familiarwith the certification

trailtechnique.Object orientedprogramming appears to be wellsuitedto thistask.

A possibleobjectionto thisisthatitprovidesfaultdetectiononlyforthe data structureimple-

mentation, sincethe surroundingcode issimply reused. Furthermore,the data structureimple-

mentation islikelytocome from librarycode,and hence be highlyreliable.In answer to thisnote
that:

in many algorithms, the code using the data structure is much simpler than the code imple-

menting the data structure.

Although the example above illustratedreuse of using the data structures,it is certainly

possibleforthiscode to be developedseparatelyforthe firstand secondexecutionprograms.

Errors are often found even in code that has been in use for a long period of time. The added

confidence of using this technique may be desirable even for library code.

Even if the library code is highly reliable, the certification trail can be helpful in detecting

errors caused by hardware problems.

Library code may have to be tuned or even rewritten to meet for a particular application or

environment, partially negating the claim of using well-tested code.

Even if fault detection is not an issue, the certification trail technique is useful during program

testing and debugging. Input may be automatically generated and processed. If the output of the

first and second executions differ or an error is otherwise flagged, the input set is flagged. This

reduces the need to otherwise compute output for selected input and enables both more and larger

sets of input to be processed. 2-version programming may be used during debugging in a similar

manner, however certification trails have the advantage of reduced overhead, allowing more test

cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussionand examples,the certificationtrailprograms have been executed serially,

i.e.,we do not run the second executionuntilafterfirstexecutioncompleted.Actually,exceptfor

sorting,the two executionsin the examples above can be run almost-concurrently.The "second"

executionsimply readsthe informationfrom the certificationtrailas itbecomes available.The two

programs willfinishnearlysimultaneously,the differencebeing in the time afterthe lastelement
isread from or writtento the certificationtrail.

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution__=-ffi____

after an error is detected. Consider the shortest path example using abstract data types. In

that example, the second execution used an indexed linked list that performed each operation in

-_ constant time by using the certification trail from the first execution. Suppose that an error had
.._ been detected during the second execution. Rather than simply aborting, it may be possible to
"" continue execution. This could be done by

r_

+ +

• Reorganizing the existing set into some other data structure (such an AVL tree, red-black

tree, etc.) that allows efficient operation without a certification trail.
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• Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note

that thiswould resultinsome operationsrequiringmore time.

• Continuing to use the indexed linked list and attempting to use the certification trail for future

operations. This may be possible if the error that occurred has sufficiently "locM" effect. For

example, if part of a tree structure is corrupted during the first execution, it is still possible

that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on "self-correcting" data structures in which enough

redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.

Using certification trails with such structures could provide an efficient detector for corruption of
the data structure.
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Finally we discuss the work our group has performed on the

design and implementation of fault injection testbeds for experi-

mental analysis of the certification trail technique This work em-

ploys two distinct methodologies: software fault injection (mod-

ification of instruction, data, and stack segments of programs on

a Sun Sparcstation ELC and on an IBM 386 PC) and hardware

fault injection (control, address, and data lines of an Motorola

MC68000-based target system pulsed at logical zero/one values).

Our results indicate the viability of the certification trail tech-

nique. We also believe the tools we have developed provide a

solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error

monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to

fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-

prehensive attempt to assess experimentally the performance and overall

value of the method. _Ve have implemented several fundamental algorithms

together with versions of the algorithms which generate and utilize certifica-

tion trails. Specifically, algorithms for the following problems are analyzed:

huffman tree, shortest path, minimum spanning tree, sorting, and convex

hull. Our results reveal many cases in which an approach using certification

trails allows for significantly faster overall program execution time than a

basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-

stract data types. This kind of problem was originally proposed in [3] and

provides a basis for applying the certification-trail method to wide classes of

algorithms. For this paper we implemented and analyzed answer-validation

solutions for two abstract data types. The first solution is for a simplified

priority queue which allows insert, min and deletemin operations, and the

second solution is for a priority queue which allows insert, min, delete and

deletemin operations. In both cases, the algorithm which performs answer-

validation is substantial faster than the original algorithm for computing the

answers.

This paper next presents a simple probabilistic model and analysis which

enables comparison between the certification-trail method and the time-
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redundancy approach. The analysis shows that when the certification-trail

method has a smaller execution time than the time-redundancy approach
it yields strictly superior performance. This means the method has both

a a smaller probability of error and a smaller probability of undetected

error. Surprisingly, the analysis also reveals the intriguing result that the

certification-trail method often can display superior performance even when

the method has the same execution time or a longer execution time than the

time-redundancy approach. This superior behavior stems from the typical

assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design

and implementation of fault injection testbeds. This work employs two

distinct methodologies: software fault injection and hardware fault injection.

The software fault injection tool is similar to an interactive debugger but

more accurately can be considered an interactive bugger. It allows programs

to be halted and faults to be injected by direct modification of tile stack,

data and instruction segments of a program. Output can then be captured
and characterized.

The hardware fault injector is based on injecting faults into an operating

microprocessor. The injection is performed by explicitly setting one or more

pins of the microprocessor to logical zero and/or logical one values. The

timing and duration of the pin setting is under control of a supervisory

processor. The testbed also includes a multi-processor system. This system

consists of three processors which are connected to one another pairwise by

shared banks of dual ported memory. We plan to use this system to conduct

evaluation of systems which utilize concurrent execution of algorithms using
the certification-trail method.

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault

tolerance, we will first discuss a simpler fault-tolerant software method. In

this method the specification of a problem is given and an algorithm to solve

it is constructed. This algorithm is executed on an input and the output is

stored. Next, the same algorithm is executed again on the same input and

the output is compared to the earlier output. If the outputs differ then an

error is indicated, otherwise the output is accepted as correct. This software

fault tolerance method requires additional time, so-called time redundancy
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[32, 52]; however, it requires no additional software. It is particularly valu-

able for detecting errors caused by transient fault phenomena. If such faults

cause an error during only one of the executions then either the error will be

detected or the output will be correct. The second possibility, of undetected

faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for

each execution, which have been written independently based on the problem

specification. This technique, called N-version programming [16, 12] (in

this case N=2), allows for the detection of errors caused by some faults

in the software in addition to those cause by transient hardware faults and

utilizes both time and software redundancy. Errors caused by software faults

are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of

error-detection capabilities but expend fewer resources. The central idea,

as illustrated in Figure 1, is to modify the first algorithm so that it leaves

behind a trail of data which we call a certification trail. This data is chosen

so that it can allow the the second algorithm to execute more quickly and/or

have a simpler structure than the first algorithm. As above, the outputs of

the two executions are compared and are considered correct only if they

agree. Note, however, we must be careful in defining this method or else

its error detection capability might be reduced by the introduction of data

dependency between the two algorithm executions. For example, suppose
the first algorithm execution contains an error which causes an incorrect

output and an incorrect trail of data to be generated. Further suppose

that no error occurs during the execution of the second algorithm. It still

appears possible that the execution of the second algorithm might use the
incorrect trail to generate an incorrect output which matches the incorrect

output given by the execution of the first algorithm. Intuitively, the second

execution would be "fooled" by the data left behind by the first execution.

The definitions we give below exclude this possibility. They demand that

the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and
discuss some aspects of its realizations and uses.
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Abstract

We describea conceptuallynoveland powerful techniqueto achievefaultdetection

and faulttolerancein hardware and software systems. When used forsoftwarefault

detection,thisnew techniqueusestime and softwareredundancy and can be outlinedas

follows.In the initialphase,a program isrun to solvea problem and storethe result.

In addition, this program leaves behind a trail of data which we call a certification trail.

In the second phase, another program is run which solves the original problem again.

This program, however, has access to the certification trail left by the first program.

Because of the availability of the certification trail, the second phase can be performed

by a less complex program and can execute more quickly. In the final phase, the two

results are compared and if they agree the results are accepted as correct; otherwise an

error is indicated. An essential aspect of this approach is that the second program must

always generate either an error indication or a correct output even when the certification

trail it receives from the first program is incorrect. We formalize the certification trail

approach to fault tolerance and illustrate realizations of it by considering algorithms

for the following problems: convex hull, sorting, and shortest path, We discuss cases in

which the second phase can be run concurrently with the first and act as a monitor. We

compare the certification trail approach to other approaches to fault tolerance.

Keywords: Software fault tolerance, error monitoring, design diversity, data structures.

1 Introduction

In this paper we describe a novel and powerful technique for achieving fault tolerance in systems.

Although applicable to both hardware and software implementation, we restrict our discussion

_ of this technique to implementation in software. To explain our technique, we will first discuss

_ a simpler method. In this method the specification of a problem is given and an algorithm to

solve it is constructed. This algorithm is executed on a particular input and the output is stored.

_ . Next, the same algorithm is executed again on the same input and the output is compared to the

;_ earlier output. If the outputs differ then an error is indicated, otherwise the output is accepted

as correct. This method requires additional time, so called time redundancy [16, 22]; however, it

requires no additional software. It is particularly valuable for detecting errors caused by transient

.., fault phenomena. If such faults cause an error during only one of the executions then either the

error will be detected or the output will be correct.

A variation of the above method uses two separate algorithms, one for each execution, which have

_ been written independently based on the problem specification. This technique, called N-version

programming [9, 3] (in this case N-2), allows for the detection of errors caused by some faults in

_Re_ch partiallysupported by NSF Grant= CCR-8910569 tad CCR-8908092.
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i Figure 1: Certification trail method.

the software in addition to those caused by transient hardware faults and utilizes both time and

software redundancy. Errors caused by software faults axe detected whenever the independently

written programs do not generate coincident errors.

-- A significant drawbax_k to the above approaches is the overhead required. Either extra time

is required to run the algorithms serially on a single processor or extra hardware is required to

run them in parallel. The technique we will describe is designed to _hieve similar types of error

detection capabilities while reducing the required resource overhead. The central idea, as illustrated

in Figure 1, is to modify the first algorithm so that it leaves behind a trail of data which we call a

certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are

compared and axe considered correct only if they agree. Note, however, that we must be careful in

defining this method or else its error detection capability might be reduced by the introduction of

-'+ data dependency between the two algorithm executions. For example, suppose the first algorithm

'= execution contains an errorwhich causesan incorrectoutput and an incorrecttrailof data to be

generated. Further suppose thatno erroroccurs during theexecutionofthe second algorithm.It

-- appears possiblethattheexecutionofthe second algorithmmight use theincorrecttrailtogenerate

an incorrectoutput which matches theincorrectoutput producedby thefirstalgorithm.Intuitively,

we can regard the two executionsas "adversaxies."The secondexecutionmust guard againstan

-" incorrectcertificationtrail"fooling"itintoproducing an incorrectoutput.The definitionswe give

below exclude thispossibility.They demand that the secondexecutioneithergeneratesa correct

answer or signalsthe factthatan errorhas been detectedinthe certificationtrail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

-- Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the

domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of

solutions) for the problem. We say an algorithm A solves a problem P itf for all d E D when d is
"- input to A then a_ s E S is output such that (d,a) E P.

2



Definition 2.2 Let P : D ---,S be a problem. A solution to this problem using a certification

trail consists of two functions Fl and F2 with the following domains and ranges Fl : D ---. S x T

and F2 : D x T _ S U (error}. T is the set of certification trails. The functions must satisfy the

following two properties:

(I) for all d E D there exists s E S and there exists t E T such that

Fi(d) = (s,t) and F2(d,t) = s and (d,s) E P

(2) for all d E D and for all t E T

either (F2(d,t) = s and (d,s) E P) or F2(d,t) = error.

We also require that Fl and F2 be implemented so that they map elements not in their respective

domains to the error symbol. The definitions above assure that the error detection capability of

the certification trail approach is comparable to that obtained with the simple time redundancy

approach discussed earlier. (That is, if transient hardware faults occur during only one of the

executions then either an error will be detected or the output will be correct.) It should be further

noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-

--L version programming, separate teams can write the algorithms for the first and second executions.

Note that the specification now must include precise information describing the generation and
use of the certification trail. Because of the additional data available to the second execution,

-_ the specifications of the two phases can be very different; similarly, the two algorithms used to

"'_ implement the phases can be very different. (This will be illustrated in the convex hull example to

be considered later.) Alternatively, the two algorithms can be very similar, differing only in data

-_-_- structure manipulations. (This will be illustrated in the shortest path example to be considered

later.) When significantly different algorithms are used, the probability that both algorithms will

contain or be affected by faults which generate matching errors should be reduced. When very

_ similar algorithms are used it is sometimes possible to save programming effort by sharing program

code. For example, the code implementing any data structures needed by the program might be

different, while the code that uses the data structure operations would be the same. This approach
is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the

ability to detect errors in the software it does not change the ability to detect transient hardware

errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps

even probable) that the majority of software errors will be in the data structure implementation.

Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-

_ ever, it is clearly possible to implement the method with assistance from dedicated hardware. It

is also possible to generalize the basic idea we have suggested. We discuss some of these gener-

alizations in a later section. Finally, we note that a wide variety of approaches to software fault

" _ tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-

_, known and significant problems in computer science: the convex hull problem, sorting, and the

shortest path problem. It should be stressed that the certification trail is not limited to these

problems. Rather, these algorithms have been selected for illustrative purposes.
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3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail

solution is based on a solution due to Graham [13] called Graham's Scan. For basic definitions in

computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some

statistical applications of convex hull computations. For simplicity in the following discussion we

will assume the points axe in so called general position, i.e., no three points axe co-lineax. It is not

dif_cult to remove this restriction.

Definition 3.1 The convex hull of a set of N points, S, in the Euclidean plane is defined as the

smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a

subset of the points in S. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-

ion. Sometimes it is necessary for the algorithm to "backup" the construction by throwing some

vertices out and then continuing. The first step of the algorithm selects the point with minimum

x-coordinate (using minimum y-coordinate to break ties), and calls it Pl. For each other point q

in S we compute the slope of the line Plq. Sort the points of S (except for/_) by this slope (since

the points axe in general position, the slopes axe distinct). Number these vertices P2,P3,...,PN.
It is not hard to show that after these three steps the points when taken in order, pl,p2,.-.,pn,

form a simple polygon; although this polygon might not be convex. It is possible to think of the

algorithm as removing points from this simple polygon until it becomes convex. This code below

performs this by "walking" through the vertices in order. The main FOR loop iteration adds points

to the polygon under construction. After a point is added, the inner WHILE loop checks the angle

formed by the addition of this point. (Note: We measure angles as follows: Given the three points

q,_,-l,q,_,P_ we measure the angle from qm-lqm to q_Pk in the clockwise direction.) If the angle

is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding

point on the polygon) is removed. Note that this will change the preceding angle, which may
now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is

encountered. Figure 2 illustrates the construction of a convex hull using this algorithm, from the

hull.

When the main FOR loopiscomplete the convex hullhas been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R 2

Output: Counterclockwise sequence of points in R 2 which define convex hull of S

1 Let pl be the point with the smallest z coordinate (and smallest y to break ties)

2 For each point p (except pl) calculate the slope of the line through Pl and p

3 Sort the points (except Pi) from the smallest slope to the largest.

Call them p2,..., p,_

4 ql :=/>I; q2 :=/_; q3 :=/>3; m = 3
5 FORk=4tonDO

6 WHILE the angle formed by q,_-l,qm,Pt is >_ 180 degrees DO

7 m:=m-1

8 END WHILE

9 m:=m+l

10 q,. := Pk
II END FOR

12 FOR i= 1 to m DO, OUTPUT(q_) END FOR

4
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Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property

that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in S containing the eliminated point.

Theorem 3.2 Let p, a, b, and c, be points in the plane such that no three are co-linear, p has the

smallest z-coordinate of the four points (and the smaller y-coordinate if another other point has the

same z-coordinate) slope(-_) < slopc(l;6) < slope(_.). If the angle abc is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays
p_ and p_. Note that the line segments pa and pc are in the half plain z > p=, and in at least one

case the inequality is strict, since no three points are co-linear. This implies that the angle ape (in
the clockwise direction) must be greater than 180 degrees. Since the angle abe is also obtuse, both

p and b must be on the same side of line _'& Therefore, b is inside the triangle pac. |

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding Pk, the angle formed by

q,,t-l,q,,t,p_ is obtuse (measured in the clocl_toise direction), then q,n is contained in the triangle
Pi , q,,t- l , pt,.

P,oof. < < n

5
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In the first execution the code CONVEXHULL is used. The certification trail is generated by

....... adding an output statement within the WHILE loop. Specifically, if an angle greater than 180

degrees is found in the WHILE loop test then the 4-tuple consisting of qm, q,n-l,pl, p, is output to

_ the certification trail. The table below shows the 4-tuples of points that would be output by the

algorithm when run on the example in Figure 2. The points in the table axe given the same names

as in Figure 2. The final convex hull points ql,...,qm are also output to the certification trail.

_ Finally, the tra£1 output does not consist of the a_:tual points in R 2. Instead, it consists of indices

to the original input data. This means if the oOginal data consists of sl, 82,..., sn then rather than
_'_:_outptit_he element in R _ corresponding to 8i the number i is output. If point coordinates were

_ output instead of these indices, the second execution would have to verify that the points on the
tra£1 axe members of S.

___ Point not on convex hull Three surrounding points

7,, ....... P3 P4,Pl,P2

.... ps pe,p ,p4
Ps, Pl,Pe

Second execution: Let the certification trail consist of a set of 4-tuples, (zl, ax, bl, cl), (x2, a2, b2, c2),
• .., (z,,a_,b_,c,) followed by the supposed convex hull, ql,q2,-.-,qm. The code for CONVEX-

-ffi_ HULL is not used in this execution. Indeed, the algorithm performed is dramaticedly different than
CONVEXHULL.

It consists of five checks on the trail data.

= i _ there_is a one to one correspondence between the input points and the points in

u

=--_ ii. That for i E _1,..., r), ai, bi, and c_ axe among the input points.

iii. For i 6 _1,...,r) that zi lies within the triangle defined by ai,bi, and ci.

-- iv. That for each triple of counterclockwise consecutive points on the supposed convex hull the

angle formed by the points is acute.

" _ _ v. That there isa unique point among the points on the supposed convex hull which is a locally

maxima] point. We say a point q on the hull is a local mazimurn point if its predecessor in the

counterclockwise_ ordering has a strictly smaller y coordinate and its successor in the ordering
" _ has a smaller or equal y coordinate.

- : = If any of these checks fail then execution halts and "error" is output. As mentioned above, the

...... trail data actually consists of indices into the input data. This does not unduly complicate the
-- checks above; in fact it makes it easier to verify the first and second conditions.

Time complexity: In the first execution the sorting of the input points takes O(n log(n)) time

• _ where n is the number of input points. One can show that this cost dominates and the overall

complexity is O(n log(n)).

It is possible to implement the second execution so that all five checks axe done in O(n) time.

' _ _ Because indices into the input data axe used, the first condition can be checked by verifying that
-- each index is used exactly once, and that MI indices axe between 1 and N. The second condition

may checked simply by verifying that each index is between 1 and N. Checking that a point lies
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within a triangle is a geometric calculation that can be done in constant time. Checking that the

angle formed by three points is acute requires only constant time. The third and fourth checks can

be done in O(n) because the certification trail contains indices into the input data as described

above. The uniqueness of the "local maximum" requires only a constant time calculation at each

point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithmsabove constitutea certificationtrailsolutionforthe convex

hull problem. Although the definitionis phrased in terms of functions,not algorithms,we can

simply definethe functionsFl(d) and F2(d,t)on particulararguments as the valuescomputed by

the associatedalgorithms.

Using our formal definitionof certificationtrails,letD be the setof allfiniteplanar pointsets

T. Let S be the setof convex polygons,with verticesin counterclockwiseorder (the restrictionto

counterclockwiseorderingmakes the convex hullunique). Then the problem we axe consideringis

HULL :D _ S where HULL(T) isthe polygon in S thatforms the convex hullof T.

The descriptionof the algorithms above definesfunctionsFI and F2. We must show that both

conditionsof Definition2.2 hold. The followingtwo lemmas, which we state without proof,axe

required.

Lemma 3.4 Let P be a polygon on n points ;h,Pa,...,P,,. P is a convex polygon iff P is simple

=',_and each angle PiPjPt is less than or equal to 180 degrees, where i is in 1,2, ...n, j = (i + 1) rood n,

" and k = (i + 2) rood n.

Lemma 3.5 If P is a non-simple polygon, then either P has more than one local maxima, or the

interior angle at some vertex is greater than 180 degrees.

Theorem 3.6 Fl(d) and F2(d, t), as defined above, constitute a certification trail solution for the

problem HULL.

Ii_ Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.
Part 1: Recall that the first condition is: for all d E D there exists s E S and t E T such

that Fl(d) = (s, t) and F2(d, t) = s and (d, s) E P. Intuitively, this means that if both executions

- _ perform correctly, then they will both output the convex hull of the input, which is unique. Note

that generation of the certification trail does not affect the output of the Graham Scan algorithm.

Thus the condition on Fx(d) is satisfied by the correctness of the Graham Scan algorithm, the proof

" _ of which is well known [20]. To show that F2(d, t) = s, note that a copy of s is contained on the

trail t. Our description of F2(d, t) states that s is output unless one of the five checks above fails.

It is trivia/to verify that the first three of these checks must be satisfied. The fourth check cannot

" "--- fail, since the polygon described by s is convex (because (d, s) E P). Similarly, if the fifth check

fails, then the polygon described by s has two local maxima, and this is not possible for a convex

polygon.
:- Part 2: The second condition is: for all d E D all t 6 T either (F2(d, t) = s and (d, s) 6 P) or

F2(d, t) = error. Intuitively, this means that given an input and arbitrary trail, F2(d, t) produces a

solution to the problem or flags an error. Our definition of F2(d, t) states that the polygon O stored

-- on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all

five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of

the points d. The first condition guarantees that every point in d is classified as a hull point or an



_.interior point. The second condition guarantees that the triangles used to identify interior points

are formed from input points, and the third check verifies that the interior points are indeed inside

their respective triangles. Note that we do not attempt to verify that the triangles on the trail areL

L.the ones that would be produced by Fl(d). In general, for a given interior point, there may be

= several triangles of input points in which it is contained. Together, the first three conditions imply

that all points in H are also in Q, since it is impossible for a hull point to be contained in a triangle.

_t..Note that these three checks do not exclude the possibility that interior points are present in Q,

nor do they guarantee that the ordering of the hull points in Q is correct. The final two checks

will accomplish this. If the last two checks axe satisfied, Lemma 3.5 states that Q is simple, and
"L_therefore it must be convex by Lemma 3.4.

Thus, Q is a convex polygon whose vertex set is a superset of the vertices of H, i.e., H is

:ontalned in Q. This implies that no other point from the input set may be a vertex of Q, since any
_nput point that is not a hull point is interior to H and therefore interior to Q. Finally, it is clear

that the ordering of the vertices of Q and H must be the same (although there might appear to

)e two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
"Lheck). Therefore if all five checks succeed, then the output of F_(d, t) will be the convex hull of d.

This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
__herefore a certification trail solution to the convex huh problem. |

_.2 Other convex hull algorithms

is possible to use this technique to provide certification trails for other convex hull algorithms.

The key is that for each non-hull point p we must find a triangle of input points (not necessarily hull

oints), containing p. For some convex hull algorithms, a containing triangle is available directly or

-i _.n be easily computed when it is determined that a particular point is not on the hull. However,

this is not true of all convex hull algorithms. If, however, we allow extra overhead during the first

_,_ecution we may apply this technique to any planar convex hull algorithm, provided that the
-"_tput is a polygon and not merely an unordered list of hull vertices.

Let H = ql,q2, qa...,qh be the convex hull of a set of n points. We label the points so that ql is

=_ _e point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the

" _maining points occur in sorted angular order around q_. Now for each non-hull point p, we may

determine which triangle PlPip_+l it lies in with a binary search. Thus we may determine containing
._ _ _angles for the non-hull points in O(nlogh) time. Under several distributions the number of hull

f_._ints is much smaller than the number of input points [20] so this overhead will often be quitesmafl.

4 Sorting

_$_ _'ting is one of the most important basic problems in computer science. There is a massive body

o_terature discussing sorting and a significant fraction of computer time is spent performing sort

, _ations. We will see how the certification trail approach may be a lied to this problem. Assume

. _-_ a par_icmar sorting algorithm takes as input an array of n ehPmPents and outputs an array of
a_--lements. The algorithm is supposed to place the data into non-decreasing order.

: _ Note that it may not appear necessary to use a certification trail for this problem. It might seem

,!:_=t all that is required is to verify that the output is in non-decreasing order. Unfortunately, this

s'i/ot sufficient and we must also verify that the output consists of the same dements as the input.
_,certification trail is required to perform this check efficiently.
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The information placed on the trail is a permutation relating the input and output arrays. This

permutation is created by adding an Item Number field to the elements being sorted, such that the

i-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements

in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check

that the the information on the certification trail actually is a permutation of n elements, i.e., each

number from 1 to n occurs exactly once. Should any of these checks fail, the second algorithm
outputs _error", otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex

hull problem. In the latter case, the certification trail was constructed for a particular algorithm,

and the code executing that algorithm modified to produce the trail. In this case, the sorting

algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the

necessary information extra, ted by a postprocessing step. Thus this technique may be implemented
as a "wrapper" around existing sort routines, no matter which algorithm is implemented.

Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-

decreasing sequences of integers. Let P : D --, S be the sorting problem, i.e., (d, s) E P iff s is a

permutation of d (by definition of S, 8 is a non-decreasing sequence). Note that for every d E D,

there is a unique s E S such that (d, s) E P. Let T consist of finite sequences of integers. For z a

member of any of the sets D, S, or T, we will also denote the sequence of integers by zl, z2, ..., ZN.

Definition 4.2 The function Fl : D _ S x T is defined as follows. Given an input sequence d

of N integers, Fl(d) -- (s,t) where _ is the unique element of S such that, (d,s) E P and t is a

permutation of 1,2,3,...,N s.t., si = dr, for al] i ---- 1, 2, ...N. Note that unless d consists of N distinct

integers, there will be more than one possible t. The t produced by Fl(d) may be chosen arbitrarily.
Since for every d E D, there exists a unique s E S with (d, 8) E P, the function F1 is well defined.

Definition 4.3 The function F2 : DxT _ SU{error) is defined as follows. F2(d, t) = dt_, dt_, ..., d_N
(where d consists of N integers) iff

i. t contains at least N integers.

ii. The first N integers of t are a permutation of (1, 2, ...N}.

iii. dr, _< dt,÷l for i = 1, 2, ..., N - 1.

Otherwise, F2(d,t) = error. Note that though t may contain more than N integers, F2(d,t)
depends only on the first N.

The definitions of the functions Fl and and F2 correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 FI and F2 are a certification trail solution to the sorting problem P.
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Proof: We must prove that both conditionsof Definition2.2 are satisfiedby thesefunctions.

Part 1. We must prove that foralld E D thereexistss E S and tE T such thatFl(d) = (s,t)

and F2(d, t) = s and (d,s) E P. If F1(d) = (s, t), then by definition (d,s) E P. We must show

that F2(d, t) = s. t is a permutation of { i, 2, ..., N), so the first two conditions of Definition 4.3 are

satisfied. Furthermore, by Definition 4.2, dr, = s_ for i = 1,2, ...N. Since s E S, it is a nondecreasing

sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore F2(d, t) = s.

Part 2: We must show that foral] dE D and allt E Teither (F2(d,t) = sand (d,s) E P)

or F_(d,t) = error. Pick d E D with length N. Pick t E T. The interesting case is when t is a

permutation of {I, 2, ..., N}. If not, then either the first N integers of t are not such a permutation,

in which case F_(d, t) = error. We may ignore the possibility that t consists of such a permutation

followed by more integers, since F2 depends only on the first N integers of t.

Examine the sequence dt_, dt_,,, dt_. If there is an i such that dr, > dt,+_ then the third condition

of Definition 4.3 is violated so F2(d, t) = error. Otherwise F2(d, t) = d_, dr2,..., diN. Furthermore,

this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation

of d, (d,F2(d,t))E P.

Therefore,both conditionsof Definition2.2are satisfied,so FI and F2 constitutea certification

trailsolutionto sorting. I

Note that we defined T as the set of all finite sequences of integers. We could have instead defined

T as the set of permutations of {I,2,...N} for all positive N. This would make the function F2

"simpler", in that it doesn't have to verify that that certification trail consists of a permutation (it

would, however, have to verify that it consists of a permutation of the correct size). In this case,

checking that the trail t is indeed a permuation (i.e., actuai]y in its domain) would be left to the
implementation of the function.

i

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Our approach is applied to

a variant of the Dijkstra algorithm [II] as explicated in [10]. First we require some preliminary
definitions.

Definition 5.1 A graph G = (V, E) consists of a vertez set V and an edge set E. An edge is an

unordered pair of distinct vertices which we notate with the following style: Iv, w] and we say v is
adjacent to w. A path in a graph from vl to vk is a sequence of vertices t_,_,...,vk such that

[vi, vi+1] is an edge for i E {I,...,k- 1}. Let w be a real function defined on E. The length of a

path from vl to v_ is the sum of w([vi, vi+l]) for each edge [vi, vi+l] in the path.

Let G --- (_', E) be a graph and let w be a positive rational valued function defined on E. Given

a vertex vl in V, find a set of shortest paths from vl to each other vertex in V. Note that since w

== is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure

,- that are required. Since many different data structures can be used to implement the algorithm, we

initially describe abstractly the data that can be stored by the data structure and the operations

that can be used to manipulate this data. The data consists of a set of ordered pairs. The first

-- element in these ordered pairs is referred to as the item number and the second element is called

the item value or just va/ue. Ordered pairs may be added and removed from the set, however, at

all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

I0
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_ multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Our default convention is that i is an item number, z is a value and

h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographically

_ as follows: (i, z) < (i', z I) iff z < z _ or (z = z' and i < i'). Our data structure should support a
subset of the following operations.

_ member(i,h) returnsa boolean valueof true ifh containsan ordered pair with item number i,
otherwisereturnsfalse.

insert(i,z,h) adds the orderedpair(i,z) to the set h.

delete(i,h) deletesthe uniqueorderedpairwith item number ifrom h.

changekey(i,z,h) isexecuted only when thereisan orderedpairwith item number i in h. This
pairisreplacedby (i,z).

deletemin(h) returnsthe orderedpairwhich issmallestaccordingto the totalorder definedabove

and deletesthispair.Ifh isthe empty setthen the token "empty" isreturned.

-_ predecessor(i,h) returnsthe itemnumber of the orderedpairwhich immediately precedesthe pair

with item number i in the total order. If there is no predecessor then the token "smallest" is
returned.

I A description such as the one above describes an abstract data type. There may be several

possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail

._ allowing the second implementation to be simpler and to perform ADT operations more quickly.
Aside from the implementation of the abstract data type, both of our algorithms are the same.

_ Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm

on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter h omitted

- to reduce clutter. Member operations are also omitted from the table. The second column gives

contents of h after the execution of each instruction. The third column records the order pair

deleted by deletemin operations. The fourth column records the information (if any) output to the
-_ certification trail by this operation.

This certification trail is created by modifying the insert(i, z, h) and changekey(i, z, h) operations

performed during the first execution. The modified instructions perform the same operations
[] described above and in addition output the following information to the certification trail.
W

insert(i, z, h) Output the item number of the predecessor of (i, z) (as defined above) to the trail.

If there is no predecessor, output the token "smallest'. Note that depending on the data

r_ structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, h) operation.

changekey(i,z, h) Output the predecessor of the ordered pair (i,z) (i.e., pair resulting from the

change) to the trail. If there is no predecessor, output the token "smallest" to the trail.

We shall see that ttLis information allows a faster and simpler data structure implementation to be
used for our second algorithm.

The algorithm proceeds by maintaining a set 5' of vertices for which shortest path lengths are

known, and a "frontier" set F of vertices adjacent to members of ,c along with the best known path

11
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length from vl. At each step, we find the vertex u in F with smallest known path length and place

it in S, F is then updated by examining the neighbors of v. New vertices may be added to F or a

shorter path (passing through v) may be found to existing vertices in F.

To efficiently find the vertex to add to S, the algorithm uses the data structure operations
described above. As soon as a vertex v is adjacent to some vertex u in S, it is inserted in the set

F. The value for v is the shortest known path to v, which is the value of u (shortest path to u)

plus the weight of edge vw. The array element prefer(v) is used to keep track of this "best" edge

connecting v to S. As the tree grows, information is updated by operations such as insert(i, z, h)
and changekey(i, z, h). The deletemin(h) operation is used to select the next vertex to add to the

span of the current tree. Note, the algorithm does not explicitly store paths. Implicitly, however,

if (v, z) is returned by deletemin, then prefer(v) indicates the predecessor of v on the shortest path
from _.

Algorithm SHORTEST-PATH(G,vl ,weight)

Input: Connected graph G = (V,E) where V = {1,...,n} with edge weights.
Output: Lengths of shortest paths from t_ to all other vertices.

FOR ALL u E V, u) := oo END FOR

vl) := 0
F := vl;

WHILE F _ _ DO

(v, k):= deletemin(F)

FOR EACH [v, w] E E DO

IF v) + weight(Iv, w]) < w) THEN

w) := v) + weight([v, w]); prefer(w) := v

IF member(w, F) THEN changekey(w, w), F)

ELSE insert(w, w), F) END IF
END IF

END FOR

13 END WHILE

14 FOR ALL u E V - {v_}, OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that this code may be easily modified to output the shortest paths as well as their lengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data

type is implemented with a balanced search tree such as an AVL tree [1], a red-black tree [14], or

_ a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains

two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered
pairs. Initiai]y, InSet is false for all array elements. The balanced search tree stores the ordered

-- pairs in h and is based on the total order described earlier. For each item number i, the InSet field
of the i-th array element is true if and only if there is a pair with item number i in the set. The

Value field of the i-th array element stores the value of the pair with item number i, if there is one

_ in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of

operations such as member(i, h) and delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different
: data structure is used to implement the ADT. We call this data structure an indezed linked list

and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed

from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12
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Operation Set of Ordered Pairs Delete Trail

insert(2,50) (2,50) smallest

insert(3,60) (2,50),(3,60) 2

dehtemin (3,60) (2,50)

insert(4,130) (3,60),(4,130) 3

insert( 5,62 ) (3,60 ),( 5,62 ),( 4,130 ) 3

deletemin (5,62),(4,130) (3,60)
changekey(4,103) (5,62),(4,103) 5

deletemin (4,130) (5,62)

changekey(4,94) (4,94) smallest

insert(6,72) (6,72),(4,94) smallest

dehtemin (4,94) (6,72)

deletemin (4,94)

deletemin empty

Ik=J

[]
Table 1: Example of operations and trail.

[] each element in the list contains a data field storing an ordered pair. The first element stores a

special ordered pair (0, "smallest") which is guaranteed to compare less than any other ordered

_ pair. The list is maintained in sorted order based on the total ordering defined above for ordered

pa;rs. This list represents the contents of the set h. The i-th element of the array points to the node

containing the ordered pair with item number i, if such an element is present in h. Otherwise the

__ pointer is nil. The 0-th element of the array points to the node containing (0, "smallest") Initially,

aLl pointers are nil except for the 0-th one. Using an ordered list Mlows us to perform dehtemin(h)
operations quickly. The array provides rapid random access to the elements. We now describe the
implementation of the data structure operations.

insert(i, z, h) Read the next value from the certification trail. This value, call it j, is the item

-- number of the ordered pair that will be the predecessor of (i,z) ai'ter it is inserted. To

o=_ insert this element, we follow the j-th array pointer to the list node containing the pair (j, y).

There is one special case, if "smallest" is read from the trail rather than an item number,
we foLlow the 0-th pointer. A new node is Mlocated and inserted into the list just after the

u_ node containing (j, y). The data field of this node is set to (i, z). Finally, the i-th pointer is

set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,

___ given that the next item on the certification trail is 3. When the insert(i, z, h) operation is
performed, some checks must be conducted:

area

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be "smallest" or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nil before the operation is performed.

W iv. The sorted order of the pairs stored in the linked list must be maintained. That is,

if the j-th pointer points to (j, II) and its successor before the insertion (ignoring the

u
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specialcase when (j,y) isthe lastelement of the list)is (j',If'),then we must have

< < (j', y').

[]
I

Ifany of thesechecksfails,then the executionhaltsand "error"isoutput.

delete(i, h) If the i-th pointer is nil, halt execution and output "error". Otherwise follow the i-th

pointer to find the list node containing (i, z). This node is removed from the list. Note that

since the list is doubly linked, this is a constant time operation. The i-th pointer is then set

to nil. The only condition that must be checked is that the i-th pointer is not nil before the
deletion

changekey(i,z,h) To perform thisoperation,itsufficestoperform delete(i,h)followedby insert(i,z,h).

The next item forthe certificationisread when the insert(i,z,h) operationisperformed. If

any of the conditionsrequiredby eitherof these operationsfails,then executionhaltsand

"error"isoutput.

deletemin(h) The 0-tharray pointeristraversedto the listhead (which contains(0,"smallest")).

The pointerto the next node in the listisfollowed.Ifthereisno next node then "empty" is

returned. Otherwise,let(i,x) be the pairstoredin that node. We remove the node from the

list,setthe i-tharrayelement to nil,and return(i,z).

member(i, h) The i-th array pointer is examined. "False _ is returned if it is nil, otherwise "true"
is returned.

predecessor(i,h) This operation is not used during the second execution of SHORTEST-PATH,

but is described for completeness. Follow the i-th pointer to the node containing the pair

(i,z). Follow the pointer from that node to the node preceding it on the list (note that this

node will always exist). If this is the special node (0, %mallestH), return "smallest", otherwise

return the item number of the pair stored in this llst.

There are two variations to this scheme that are worth noting. First, we could implement a

singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the

extra pointer. Note, however, that operations such as delete(i, h) require access to predecessors in

" order to update the list quickly. This can be provided by modifying the operations delete(i, h),

- - changekey(i, x, h), and predecessor(i, h) so that they output predecessor information to the trail.
The other variation also uses a singly linked list but removes the need for extra certification trail

-" information for delete(i, h) and changekey(i, z, h) operations. It uses the technique of marking a

H list node for deletion rather than removing them from the list node immediately (the appropriate

pointer in the array is still set to nll immediately). When performing other operations, we check

for and remove any marked nodes immediately following nodes visited. The total running time is
still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in

O(log(n)) time where IVI = n. There are at most O(m) such operations and O(m) additional time

_. overhead where IE[ = m. Thus, the first execution can be performed in O(mlog(n)) In addition,

it provides us with a relatively simple and illustrative example of the use of & certification trail.
imm

In the second execution each data structure operation can be performed in O(1). There are still

at most O(m) such operations and O(m) additional time overhead. Hence, the second execution

can be performed in O(m) time, i.e., linear time.

Section 6 contains results of timing experiments with this technique.
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5.1 Proof of correctness

_,Ve wish to prove that the two algorithms given above constitute a certification trail solution to the

SHORTEST-PATH problem, i.e., that the functions Fl(d) and F2(d, t) defined by these algorithms

satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

-- Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above.

Let S be the set of finite sequences of answers to data structure operations. Let P be the relation

(d,s) where d E D'and s E S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set.

Note that we axe examining all finite sequences of data structure operations, not just "legal"

ones. That is, may attempt to perform an insertion with an item number already in use, attempt

"- to perform deletion on an item number not being used, etc. We assume that if one of these "illegal"

_1 operations is attempted, the operation will output "error" and terminate processing. Thus, we can
define the answer sequences for these "illegal" sequences.

_ Definition 5.3 Let Fl(d) be defined by the result of executing the operations on any of the stan-

'_ dard data structures described above, with the insert(i, z, h) and changekey(i, z, h) operations rood-

=" ified to output trail information. Let F_(d, t) be defined by the result of executing the operations
-_ using the indexed linked list implementation described above.

m Theorem 5.4 Fl(d) and F2(d,t) meet the conditions of Definition 2.2 (that is, Fl(d) and F2(d,t)
constitute a certification trail solution for P).

Proof: We must prove that both conditions of Definition 2.2 axe satisfied by these functions.

Part 1: The first condition we must verify is that for all d E D there exists s E S and there

exists t E T such that Fl(d) = (s,t) and F2(d,t) = s and (d,s) E P. Let (s,t) = Fl(d). The
"_ modifications of the data structure operations that produce trail output do not affect how the data

structure is maintained. Proofs of correctness for the standard data structures are well known, so
we may assume (d, 5) E P. We must demonstrate that F_(d, t) = ._.

.- This may be proven by showing that after each operation that modifies the set h, the elements

stored in the indexed linked list (our implementation) correspond to the elements in the set h (the
abstract definition). We must also demonstrate that if this relationship is maintained, then correct
output is generated by operations that generate output.

To demonstrate this, we show that each operation maintains the following invaxiants.

.- i. If the pair (i, z) is in h U (0, "smallest_O, then the i-th pointer in the array of pointers points
to the list node containing (i,x).

ii. If, for some i, there is no pair in h with item number i then the i-th pointer is nil.

iii. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,
this implies that it is pointed to by exactly one pointer from the array).

The first two conditions assert that the indexed linked list and the set h contain the same

-- elements (ignoring the special list heart element in the linked list). The last two invariants allow us
:_ to demonstrate that the linked list operations function correctly.
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Clearly each of these conditions is true before the first operation is performed (the set of pairs

is empty, all pointers except the 0-th axe nil, and (0, "smallest") is the only llst node).

Assume that the above conditions are satisfied after the first k operations, and that the output
generated by any of the first k operations is correct. We claim that the inv_riants will will remain

satisfied after the (k+ l)-st operation, and that if the (k+ 1)-st operation generates output, it will be

correct.Let s(k + I)denote the output produced by the (k+ l)-stoperation(where F1(d) = (s,t)).

Consider each possibleoperation.For brevity,we omit detailsfor"illegal"operations,i.e.,those

that violatethe preconditionof the operation.Similarly,we omit detailsof the specialcaseof
"smallest"being read from the trail.

insert(i, z, h) The trail t contains the item number j of the predecessor of (i, z). Call the predecessor

(J, I/). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs

"error" and execution halts. Since the indexed linked list correctly represents h at this point,
" this agrees with the result returned by Fl(d), i.e., s(k + 1) = "errod _. After the insertion is

performed, the i-th pointer is set to the new node containing (i, z), so the first condition is

- satisfied.No other nodes axe added to thelist,so the second conditionwillremain true.The

" third condition is satisfied since (j, I/) is now the immediate predecessor of (i, z). Since no
other pointer in the array has been changed, the fourth condition is still true.

_- delete(i,h) This operation sets the i-th pointer to nil, and removes the node containing (i,x)
from the list. This satisfies the second invariant. Deleting _t node cannot violate the third

invaxiant. Since no other nodes are removed and no other pointers axe changed, the first and
-" fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum

•- element in h must correspond to the node following the special list head node, call the pair it

contains (i, z). This pair is the correct output for this operation. As with delete, the above
four conditions remain true after this node is removed and the i-th pointer set to nil.

"- changekey(i, z, h) We have implemented changekey(i,z, h) as an insertion followed by a deletion.

Since both of those preserve the invaxiants, changekey(i, z, h) must do so as well.

-- member(i,h) By assumption, the indexed linked list correctly represents h before this operation,

so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, h) By assumption, the indexed link list correctly represents h, and furthermore it is

= currently in sorted order. Thus, the list element preceding the node containing (i,z) is the

- predecessor. Since this operation changes neither h nor the indexed linked list, the invariants
remain satisfied.

-- This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d E D and for all t E T either (F2(d, t) = s and

(d, s) E P) or F2(d, t) - error. Intuitively, this states that if Fa(d, t) is passed an arbitrary trail, it

,- either outputs a correct answer, or it outputs "error". We prove an even stronger condition. Let

tc,_,ect be the trail returned by Fl(d), i.e., Fl(d) = (s, tc_,,eet). Then either tco,,e_ is a prefix oft,
or F2(d, t) - error.

-- If tco,,ect is a prefix of t, then we axe done. The algorithm describing F_(d, t) does not examine
any part of the trail after tc_,,ect, so F2(d, t) = 8.
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If tco,_ct is not a prefix of t, let p be the position at which they first differ. Let O be the number

of the operation that uses the trail data at p. Then operation 0 is either an insert(i, z, h) or

changekey(i, z, h) operation. If it is an insert operation, then toot,ca contains the item number of

the predecessor of (i, z). Since t contains a different value, can it j, at this location, the insert(i, z, h)

operation will fail one of it's three checks. Either j will not be valid item number, or the j-th

pointer will be nil, or the pair (j, y) will not be the predecessor of (i,z). The argument for the

changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, Fl(d) and F2(d, t) are a certification trail solution to P, the problem of evaluating

data structureoperations. |

Definition 5.5 Let D be the set of finite graphs G = (V, E) with edge weights consisting of positive

integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples

of positive integers. Let P be the relation that associates each graph with the tuple consisting of

the minimum path lengths to each vertex. Let SPI(d) be the function defined by the SHORTEST-

PATH algorithm with the data structure defined for the first execution. Let SP2(d, t) be the function

defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.6 S Pl(d) and S P2(d, t) constitute a certification trail solution for P.

Proof: If SPl(d) = (s, t), then the correctness of Dijkstra's algorithm implies that (d, s) E

P. The algorithms that compute SPI(d) and SP2(d,t) are the same except for data. structure

implementation. Theorem 5.4 implies that if these algorithms generate the same data structure

operations, then the same sequence of answers will be generated. Thus, to demonstrate that

SP2(d, t) = s, it must be shown that the same sequence of data structure operations is generated

by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure

operation to be performed is dependent only on the input and the result of previous data structure

operations. For example, at line 9, either an insert(i, z, h) or a changekey(i,z, h) is performed,

depending on the result of a member(i,h) operation. The input graph d is identical for both

algorithms, thus the first data structure operation performed must be the same. Assume that the

first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers

to those operation will be the same. Since the (k + 1)-st operation depends only on the input and

the results of the previous k operations, it must also be the same for both algorithms. Therefore

the same sequence of data operations is performed in both algorithms, so SP2(d, t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail

t contains the "correct" trail as a prefix, or one of the data structure operations will fail, resulting

in an "error" output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results

of deletemin(h) are not output nor are they stored in the certification trail. It might be possible for

incorrect answers to be returned by deletemin(h) operations while still producing correct shortest

paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this

since the correct output is produced. By proving that the answers to deletemin(h) operations are

the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-

ing the ones described in this paper. Algorithms for solving these problems were implemented, both
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with and without the use of certification trails. Timing data was collected on both the certification

trail solutions and the basic solutions. The following tables summarize these results.

Size

5ooo
10000

25000

Basic Algorithm

0.61

1.33

First Execution

(Also Generates Trail)
0.62

1.34

3.68

Second Execution

(Uses Trail)
0.07

0.i4 _

Speedup

8.73

9.56

Percent

Savings
43.62

44.54

3.68 0.36 10.22 45.12

50000 7.68 7.74 0.71 10.75 44.94

100000 16.23 16.30 1.43 11.35 45.39

200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

Size

10000

Basic Algorithm

0.28

First Execution

(Also Generates Trail)

Second Execution

(Uses Trail)
0.04

Speedup Percent

Savings

39.290.30 7.00

50000 1.80 1.90 0.19 9.47 41.94

100000 3.96 4.08 0.41 9.66 43.31

500000 23.95 24.69 2.14 11.19 43.99

1000000 50.23 51.57 4.38 11.47 44.31

Table 3: Sort

r

Size Basic Algorithm First Execution Second-Execution Speedup Percent

(Also Generates Trail) (Uses Trail) Savings
100,1000 0.04 0.05 0.02 2.00 12.50

250,2500 0.15 0.16 0.06 2.50 26.67

500,5000 0.31 0.33 O.11 2.82 29.03

1000,10000 0.70 0.76 0.23 3.04 29.29

2000,20000 1.58 1.67 0.45 3.51 32.91

2500,25000 2.06 2.15 0.55 3.75 34.47

Table 4: Shortest Path

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The

- system was run as a standalone machine in single user mode during timing experiments.

_:_ Much of the data presented in the timing table is essentially self-explanatory relative to the

certification trail technique and algorithms considered. However, a brief discussion of the table
entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the

-- algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.
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The FirstExecutioncolumn givesthe executiontime of the algorithmin producing the output

with the additionaloverhead ofgeneratingthe certificationtrail.

The Second Executioncolumn givestheexecutiontime of the algorithmin producing the output

while using the certificationtrail.

The Speedup column is the ratioof the run times of the Basic Algorithm and the Secondary

Execution. One reasonthisfigureisimportant isthat itispossibleforthe two algorithmsto run in

differentenvironments (differenthardware,programming language,etc).A high speedup indicates

that lesspowerfulhardware or a higherlevellanguage (with associatedoverhead)may be sufficient

forthe second execution.

The Percent Savingscolumn recordsthe percentageof theexecutiontime savingswhich isgained

by using the certificationtrailmethod as compared to 2-versionprogramming approach. The time

requiredfora 2-versionprogramming approach was estimatedby doublingthe time reportedin the

Basic algorithm.This assumes thatboth versionstake approximately the same amount of time to

execute.

In addition to the tables, the timing information for the convex hull algorithm is plotted in

Figure 5. Plots for the other two examples are similar.

Examination of the data collected for the convex hull algorithm indicates that:

• The overhead in generating the certification trail is very small, less than 2% of the running

time of the basic (no certification trail) algorithm.

• The second execution is very fast, achieving an order of magnitude speedup for larger input

sizes. This suggests that a single "second algorithm _ process could easily handle the output

generated by several "first algorithm _ processes running in parallel. Alternately, the high

speedup would allow the second execution to be run on lower performance (and hence less

expensive) hardward. Finally, the large speedup and reduced code complexity may make it

possible to take advantage of a formally verifiable language (which may require significant

overhead) in implementing the second algorithm.

The data for sorting indicates that the certification trail also requires very low overhead and

results in a large speedup. For the shortest path problem the overhead is still very low, and the

speedup, while not as dramatic as for the first two problems, is stRl quite respectable.

7' Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault

detection techniques that have been previously proposed and examined, but in each case there are

significant and fundamental distinctions. These distinctions are primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the

certification trail.

First consider the important and useful technique called N-version programming [9, 3]. When

using this technique N different implementations of an algorithm are independently executed with

subsequent comparison of the resulting N outputs. There is no relationship among the executions of

the different versions of the algorithms other than that they all use the same input; each algorithm

is executed independently without any information about the execution of the other algorithms. In

marked contrast, the certification trail approach allows the primary algorithm to generate a trail

of information which can be read by the secondary algorithm. The advantages of utilizing this

additional information are shown in the body of this paper. In effect, N-version programming can

be thought of relative to the certification trail approach as the employment of a null trail.
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Another valuable technique, known as the recovery block approach [2, 18, 21], was proposed by

-- RandeU. It uses acceptance tests and alternative procedures to produce what is to be regarded as

a correct output from a program. When using recovery blocks, a program is viewed as a being
structured into blocks of operations, which after execution yield outputs which can be tested in

some informal sense for correctness. The rigor, completeness, and nature of the acceptance test

is left to the program designer, and many of the acceptance tests that have been proposed for

use tend to be somewhat straightforward [2]. When using certification trails it is clearly possible

-- to combine the second execution and the comparison test to yield a program which certifies the

correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy
strict formal properties of correctness. Also note that the certification trail technique emphasizes

-- the capability of generating additional data to ease the certifying process and does not rely solely

on data which would normally be computed. It should be possible to fruitfully combine the ideas
of recovery blocks and certification trails.

" Algorithm-based fault tolerance [15, 17, 19] uses error detecting and correcting codes for perform-

ing reliable computations with specific algorithms. This technique encodes data at a high level and

algorithms are specifically designed or modified to operate on encoded data and produce encoded

-- output data. Algorithm-based fault tolerance is distinguished from other fault tolerance techniques
by three characteristics: the encoding of the data used by the algorithm; the modification of the

algorithm to operate on the encoded data; and the distribution of the computation steps in the

•- algorithm among computational units. The error detection capabilities of the algorithm-based fault

tolerance approach are directly related to that of the error correction encoding utilized. The cer-

tification trail approach does not require that the data to be executed be modified nor that the

-i fundamental operations of the algorithm be changed to account for these modifications. Instead,
only a trail indicative of aspects of the algorithm's operations must be generated by the algorithm.

_ As seen in Section 6, the production of this trail does not add significant overhead. Moreover, any
combination of computational errors can be handled.

Recently, Blum and Kannan [6] have defined what they call a program checlcer. This interesting
-- work has been followed by a burst of activity in this general area [12, 7, 25, 8, 4]. Each of these

"- papers, however, describes work which differs significantly from the work we present. A program

checker is an aigorithm which checks the output of another algorithm for correctness. An early
_-_ example of a program checker is the algorithm developed by Taxjan [23] which takes as input a

graph and a supposed minimum spanning tree and indicates whether or not the tree actually is aminimum spanning tree.

_ The Blum-Kannan program checking method differs from the certification tra£1 method in two

important ways. First, the checker is designed to work for a problem and not a specific algorithm.

That is, the checker design is based on the input/output specification of a problem and no assump-

__ tions axe made about the method being used to solve the problem. Because of this the algorithm

which is being checked is treated as a black box. It can not be altered nor can its internal status

be examined and exploited. In the certification trail approach the algorithm being checked is not

: treated as a black box. Instead, the algorithm can be modified to generate additional information

(i.e., the certification trail) which is considered to be useful in the checking/verification process. By
exploiting this capability it is sometimes possible to design certification trail solutions which allow

-faster checking than Blum-Kannan program checkers. Of course, these faster solutions axe more

_specialized than the Blum-Kannan checkers which axe guaranteed to work for any algorithm which

solves the original problem. We believe that the added speed often outweighs the disadvantage ofrspecia.lization.
t

W The second important difference concerns the number of times that the program which is being

checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial
r_
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number of times. In the certification trail approach the program is run only once. Thus, the overall
_ time complexity of the checking process can be significantly larger for Bhm-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined

in a more general probabilistic context. Certification trails are currently defined only for deter-

- ministic programs and checkers. However, it is clearly possible to define them in the more general
probabilistic context.

Other work has been done to extend the ideas of Blum-Kannan to give methods which allow

the conversion of some programs into new programs which are serf-testing and seLf-correcting [12,
-- 7]. However, these methods are also based on treating programs as black boxes and thus have

_,_ limitations similar to Bhm-Kannan program checkers. A recent paper by Blum et al. [8] concerns

•- checking the correctness of memories and data structures. The results described in that paper

differ from our work using abstract data types in one central way. The checkers that they design
are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data

structures of size O(n). Our results do not place space constraints on the algorithm used to certify
the data structure. Without a space constraint we are able to certify abstract data types such as

_ priority queues which are more complex than the data structures that they check, i.e., stacks and

queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babal, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast

_ checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we

i propose. Both methods modify original algorithms to yield new algorithms which output additional

information. We refer to this additional information as a certification trail and they refer to this

-_ information as a witness. In our case we are interested in modified algorithms which have the same

asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be

slowed down by at most a factor of two. In [4] the modified algorithm is slowed down by more than

;_ any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of O(T)
then the modified algorithm has a time complexity of O(Tt+¢). Note that in practice the _ cannot

be too small because its inverse appears in the exponent of the checker time complexity. Another

_ difference between our methods is the fact that their method requires that the input and output

be encoded using an error-correcting code. The encoding process takes O(N TM) time for strings
of length N. However, many of the checkers we have developed take only linear time so the cost

of simply preparing to use their method appears to be too great in some cases. It is also necessary
-. to decode the output after the check. Lastly, we note that Fortnow has stated that their result is

currently not practical [24].

w

8 Generalization and'Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical

value as well as of theoretical interest. Furthermore, the techniques ilhstrated are applicable to a
wide range of problems, especially the certification of Abstract Data Types described in the shortest

path example. There are many areas of interest for future exploration, a few of which are describedbelow.

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program

may be used for a variety of problems. Since the certification trail is produced and used by abstract

data type operations, the technique may be used with any algorithm that can be implemented in

terms of those abstract data types. Creating a library of such "certified data types" enables
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programmers to create fault tolerant programs without having to be familiar with the certification
tr_l technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-

mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-
mentation is Likely to come from library code, and hence be highly reliable. In answer to this note
that:

• In many algorithms, the code using the data structure is much simpler than the code imple-
menting the data structure.

• Although the example above illustrated reuse of using the data structures, it is certainly

possible for this code to be developed separately for the first and second execution programs.

• Errors are often found even in code that has been in use for a long period of time. The added

confidence of using this technique may be desirable even for library code.

• Even if the library code is highly reliable, the certification trail can be helpful in detecting
errors caused by hardware problems.

• Library code may have to be tuned or even rewritten to meet for a particular appLication or

environment, partially negating the claim of using well-tested code.

Even if fault detection is not an issue, the certification trail technique is useful during program
testing and debugging. Input may be automatically generated and processed. If the output of the

first and second executions differ or an error is otherwise flagged, the input set is flagged. This

reduces the need to otherwise compute output for selected input and enables both more and larger

sets of input to be processed. 2-version programming may be used during debugging in a similar

manner, however certification trails have the advantage of reduced overhead, allowing more test

cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail progra_ns have been executed serially,

i.e., we do not run the second execution until after first execution completed. Actually, except for

sorting, the two executions in the examples above can be run _most-concurrently. The "second"

execution simply reads the information from the certification trail as it becomes available. The two

programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification tra£1.

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution

after an error is detected. Consider the shortest path example using abstract data types. In

that example, the second execution used an indexed linked llst that performed each operation in

constant time by using the certification trail from the first execution. Suppose that an error had

been detected during the second execution. Rather than simply aborting, it may be possible to
continue execution. This could be done by

• Reorganizing the existing set into some other data structure (such an AVL tree, red-black
tree, etc.) that allows efficient operation without a certification trail.
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* Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note

that this would result in some operations requiring more time.

• Continuing to use the indexed linked list and attempting to use the certification trail for future

operations. This may be possible if the error that occurred has sul_ciently "local" effect. For

example, if part of a tree structure is corrupted during the first execution, it is still possible

that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on "self-correcting" data structures in which enough

redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.

Using certification trails with such'structures could provide an ef_cient detector for corruption of
the data structure.
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Abstract

Certification trails are a recently introduced and promising

approach to fault-detection and fault-tolerance [1, 2, 3, 4]. In

this paper, we report on a comprehensive attempt to assess ex-

perimentally the performance and overall value of the method.

The method is applied to algorithms for the following problems:

huffman tree, shortest path, minimum spanning tree, sorting,

and convex hull. Our results reveal many cases in which an

approach using certification-trails allows for significantly faster

overall program execution time than a basic time redundancy-
approach.

We also examine algorithms for the answer-validation prob-

lem for abstract data types. This kind of problem was originally

proposed in [3] and provides a basis for applying the certification-

trail method to wide classes of algorithms. We implemented and

analyzed answer-validation solutions for two types of priority

queues. In both cases, the algorithm which performs answer-

validation is substantially faster than the original algorithm for

computing the answers.

Next we present a probabilistic model and analysis which en-

ables comparison between the certification-trail method and the

time-redundancy approach. The analysis reveals some substan-

tial and sometimes surprising advantages for the certification-
trail method.
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Finally we discuss the work our group has performed on the

design and implementation of fault injection testbeds for experi-

mental analysis of the certification trail technique This work em-

ploys two distinct methodologies: software fault injection (mod-

ification of instruction, data, and stack segments of programs on

a Sun Sparcstation ELC and on an IBM 386 PC) and hardware

fault injection (control, address, and data lines of an Motorola

MC68000-based target system pulsed at logical zero/one values).

Our results indicate the viability of the certification trail tech-

nique. We also believe the tools we have developed provide a

solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error

monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to

fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-

prehensive attempt to assess experimentally the performance and overall

value of the method. We have implemented several fundamental algorithms

together with versions of the algorithms which generate and utilize certifica-

tion trails. Specifically, algorithms for the following problems are analyzed:

huffman tree, shortest path, minimum spanning tree, sorting, and convex

hull. Our results reveal many cases in which an approach using certification

trails allows for significantly faster overall program execution time than a

basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-

stract data types. This kind of problem was originally proposed in [3] and

provides a basis for applying the certification-trail method to wide classes of

algorithms. For this paper we implemented and analyzed answer-validation

solutions for two abstract data types. The first solution is for a simplified

priority queue which allows insert, min and deletemin operations, and the

second solution is for a priority queue which allows insert, min, delete and

deletemin operations. In both cases, the algorithm which performs answer-

validation is substantial faster than the original algorithm for computing the
answers.

This paper next presents a simple probabilistic model and analysis which

enables compai'ison between the certification-trail method and the time-
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redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach

it yields strictly superior performance. This means the method has both

a a smaller probability of error and a smaller probability of undetected

error. Surprisingly, the analysis also reveals the intriguing result that the

certification-trail method often can display superior performance even when

the method has the same execution time or a longer execution time than the

time-redundancy approach. This superior behavior stems from the typical

assymetry of the execution times of the first and second executions in the

certification-trail method.

The paper next discusses the work our group has performed on the design

and implementation of fault injection testbeds. This work employs two

distinct methodologies: software fault injection and hardware fault injection.

The software fault injection tool is similar to an interactive debugger but

more accurately can be considered an interactive bugger. It allows programs

to be halted and faults to be injected by direct modification of the stack,

data and instruction segments of a program. Output can then be captured

and characterized.

The hardware fault injector is based on injecting faults into an operating

microprocessor. The injection is performed by explicitly setting one or more

pins of the microprocessor to logical zero and/or logical one values. The

timing and duration of the pin setting is under control of a supervisory

processor. The testbed also includes a multi-processor system. This system

consists of three processors which are connected to one another pairwise by

shared banks of dual ported memory. We plan to use this system to conduct

evaluation of systems which utilize concurrent execution of algorithms using

the certification-trail method.
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2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault

tolerance, we will first discuss a simpler fault-tolerant software method. In

this method the specification of a problem is given and an algorithm to solve

it is constructed. This algorithm is executed on an input and the output is

stored. Next, the same algorithm is executed again on the same input and

the output is compared to the earher output. If the outputs differ then an

error is indicated, otherwise the output is accepted as correct. This software

fault tolerance method requires additional time, so-called time redundancy
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[32, 52]; however, it requires no additional software. It is particularly valu-

able for detecting errors caused by transient fault phenomena. If such faults

cause an error during only one of the executions then either the error will be

detected or the output will be correct. The second possibility, of undetected

faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for

each execution, which have been written independently based on the problem

specification. This technique, called N-version programming [16, 12] (in

this case N=2), allows for the detection of errors caused by some faults

in the software in addition to those cause by transient hardware faults and

utilizes both time and software redundancy. Errors caused by software faults

are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of

error-detection capabilities but expend fewer resources. The central idea,

as illustrated in Figure I, is to modify the first algorithm so that it leaves

behind a trail of data which we call a certification trail. This data is chosen

so that it can allow the the second algorithm to execute more quickly and/or

have a simpler structure than the first algorithm. As above, the outputs of

the two executions are compared and are considered correct only if they

agree. Note, however, we must be careful in defining this method or else

its error detection capability might be reduced by the introduction of data

dependency between the two algorithm executions. For example, suppose

the first algorithm execution contains an error which causes an incorrect

output and an incorrect trail of data to be generated. Further suppose

that no error occurs during the execution of the second algorithm. It still

appears possible that the execution of the second algorithm might use the

incorrect trail to generate an incorrect output which matches the incorrect

output given by the execution of the first algorithm. Intuitively, the second

execution would be "fooled" by the data left behind by the first execution.

The definitions we give below exclude this possibility. They demand that

the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and

discuss some aspects of its realizations and uses.
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Figure 1: Certification trail method.

Definition 3.1 A problem P is formalized as a relation, i.e., a set of ordered

pairs. Let D be the domain (that is, the set of inputs) of the relation P and

let S be the range (that is, the set of solutions) for the problem. We say an

algorithm A solves a problem P iff for all d E D when d is input to A then

an s E S is output such that (d,s) E P.

Definition 3.2 Let P : D _ S be a problem. A solution to this problem

using a certification trail consists of two functions F1 and F2 with the fol-

lowing domains and ranges F1 : D _ S x T and F2 : D × T --* S U {error}.

T is the set of certification trails. The functions must satisfy the following

two properties:

(1) for all d E D there exists s E S and there exists t E T such that

Fl(d) = (s,t) and F2(d,t) = s and (d,s) E P

(2) for all d E D and for all t E T

either (F2(d, t) = s and (d, s) E P) or F2(d, t) = error.

We also require that F1 and F2 be implemented so that they map ele-

ments which are not in their respective domains to the error symbol. The

definitions above assure that the error-detection capability of the certification-

trail approach is similar to that obtained with the simple time-redundancy

approach discussed earlier. (That is, if transient hardware faults occur dur-

ing only one of the executions then either an error will be detected or the

output will be correct.) It should be further noted, however, the examples

to be considered will indicate that this new approach can also save overall
execution time.
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Throughout this section we have assumed that our method is imple-

mented with software, however, it is clearly possible to implement the method

with assistance from dedicated hardware. The degree of diversity or inde-

pendence achieved when using certification trails depends on how they are

used. A fuLler discussion of this and of the relationship between certification

trails and other approaches to software fault tolerance is contained in the

expanded version of [1].

4 Generalized Priority Queue

Before we present our example algorithms which use certification trails we

must discuss the notion of an abstract data type. An abstract data type has

a well defined data object or set of data objects, and an abstract data type

has a carefully defined finite collection of operations that can be performed

on its data object(s). Each operation takes a finite number of arguments

(possibly zero), and some but not aLl operations return answers.

Some of the algorithms presented in the next section use the priority

queue abstract data type. In addition, later in this paper the answer-

validation problem for two _'ariants of the priority queue are presented.

Therefore, we now describe the priority queue. The data consists of a set

of ordered pairs. The first element in these ordered pairs is referred to as

the item number and the second element is called the key value. Ordered

pairs may be added and removed from the set, however, at all times the item

numbers of distinct ordered pairs must be distinct. It is possible, though,

for multiple ordered pairs to have the same key value. In this paper the item

numbers are integers between 1 and n, inclusive. Our default convention is

that i is an item number, k is a key value and h is a set of ordered pairs.

A total ordering on the pairs of a set can be defined lexicographically as

foLlows: (i, k) < (i', k') iff k < k' or (k - k' and i < i'). The abstract data

types we will consider support a subset of the following operations.

member(i) returns a boolean value of true if the set contains an ordered

pair with item number i, otherwise returns false.

insert(i, k) adds the ordered pair (i, k) to the set. We require that no other
pair with item number i be in the set.

delete(i) deletes the unique ordered pair with item number i from the set.

We require that a pair with item number i be in the set initially.
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changekey(i,k) is executed only when there is an ordered pair with item

number i in the set. This pair is replaced by (i, k).

deletemin (or deletemax) returns the ordered pair which is smallest (or
largest) according to the total order defined above and deletes this

pair. If the set is empty then the token "empty" is returned.

min (or max) returns the ordered pair which is smallest (or largest) accord-

ing to the total order defined above. If the set is empty then the token
"empty" is returned.

predecessor(i) returns the item number of the ordered pair which immedi-

ately precedes the pair with item number i in the total order. If there

is no predecessor then the token "smallest" is returned. We require

that a pair with item number i be in the set initially.

If an operation violates one of the requirements described above then it is

considered to be ill-formed. Also, if an operation has the wrong number or
type of arguments it is considered to be ill-formed.

Many different types and combinations of data structures can be used

to support different subsets of these operations efficiently.

w

W

5 Examples of the Certification Trail Technique

with Timing Data

In this section we evaluate the use of certification trails for five well-known

and significant problems in computer science: the convex hull problem, the

minimum spanning tree problem, the shortest path problem, the Huffman

tree problem, and the sorting problem. We have implemented algorithms

for these problems together with other algorithms which generate and use
certification trails.

We provide a full description of the algorithm for the convex hull problem

which generates a certification trail and a full description of the algorithm

which uses that trail. This material has not appeared in our previous publi-
cations [1, 3]. Because of space considerations the discussion of three of the

other algorithms is abbreviated, but references to previous publications or

technical reports which describe the algorithms more fully are given. The

treatment of the sort algorithm is brief but is detailed enough for the inter-
ested reader to implement the certification-trail method.

7
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The algorithms we have choosen to implement are not always the al-

gorithms which have the smallest asymptotic time complexity. Often the

asymptotically fastest algorithms have large constants of proportionality
which make them slower on the data sizes we examined. We modified and

used some programs from major software distributions such as quicker-sort

from a Berkeley Unix distribution. Other algorithms were based on text-

book discussions. It should be stressed here that this research is exploratory

and we hope to further increase our corpus of algorithm and data-structure
implementations.

5.1 Systems used for timing data

We have collected timing data for the algorithms considered using a Sun

workstation, an IBM 386 PC and a Motorola 68000-based system.

The SUN machine utilized was a SPARCstation ELC with 16MB of

RAM. The system was run as a standalone machine in single user mode

during the timing experiments. Timing data was obtained through the

getrusage() system call; the user times are reported in the data.

Some of the algorithms were also run on an MSDOS machine: a North-

gate 386/33 with 8MB of RAM. The programs were compiled using DJGPP,

DJ Delorie's port of the GNU GCC compiler to MSDOS. This compiler uses

a DOS extender to allow programs to run in protected mode; thus nearly all

of the 8MB in the machine was available, thereby allowing data sets com-

parable in size to those used on the Sun. The programs required no change

to run under MSDOS, though the data generators required minor modifi-

cation because the drand48() family of random number generators was not
available.

Finally some of the algorithms were also run Motorola M68000-based

target system. In addition to the MC68000 microprocessor which served as

the cpu, the system was also was comprised of 512K bytes of RAM, 512

bytes of ROM, and numerous I/O modules to support serial and parallel

communication. A timer module is also included in the system which uses

the 4Mhz clock as a reference so as to provide execution time data for

experiments. This system is discussed in Section 10 relative to fault injection
experiments.
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5.2 Explanation of timing data table entries

Much of the data presented in the timing table is essentially self-explanatory

relative to the certication trail technique and algorithms considered. How-

ever, a brief discussion of the table entries is appropriate.

The Basic Algorithm timing data refers to the execution time of the

algorithm in producing the output without the generation of the certification
trail. All timing data is listed in seconds.

The Generate Certif. timing data refers to the execution time of the al-

gorithm in producing the output with the additional overhead of generating
the certification trail.

The Use Certif. timing data refers to the execution time of the algorithm

in producing the output while using the certification trail.

The Compare timing data refers to the time necessary to compare the

outputs from both two Basic Algorithm runs or from a Generate Certifi-

cation Trial run and a Use Certification Trail run. (Obviously, the value

of the comparison would be the same in each case.) For the some of the

experiments, the data was too small to calculate and is therefore listed as

0.00. In other experiments, the comparison was included in the algorithm

execution timing data and therefore is not separately listed.

The Total Basic timing data is twice the Basic Algorithm timing data

plus the Comparison time (when available) so as to evaluate the classical
time-redundancy approach.

The Total Certif. timing data is the sum of the Generate Certif. timing

data and the Use Certif. data and Comparison data (when available) so as
to evaluate the certification trail approach.

The _0 Savings data is percentage of the execution time savings which is

gained by using the certification trail method as compared to the classical

time redundancy method.

For the Huffman tree data, the input size for the Huffman tree program

is the number of nodes. Each node is given a frequency, chosen uniformly

from the integers {1, 2, ..., n}. n was selected to be the number of nodes,

but in fact it's value does not affect the running time of the algorithm. In

order for the algorithm to execute correctly, the sum of the frequencies must
not cause an arithmetic overflow. The certification trail method will detect
this.

For the minimum spanning tree and shortest path tables, there are two

numbers associated with the input size, the first is the number of vertices

in the graph, the second the number of edges. A graph with the required

F_
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edges is selected uniformly from the set of all such graphs, then tested for

connectedness. The algorithms will function regardless of connectedness,

but allowing graphs that are not connected would introduce undesirable

variation in the timing data.

For the convex hull tables, the input size is the number of points in the

data set. The points are chosen uniformly from the set of points with integer

coordinates between 0 and 30,000.

For the sorting tables, sorting was timed in two ways. The first set of

results were obtained by sorting integers. To generate a trail, an integer tag

is added to each input integer and an array of these pairs passed to the sort

function. After sorting, the "data" integers are placed in an array, and the

"tag" integers are placed on the certification trail. Thus, the sort call looks

the same as a normal sort function. The time to massage the data in this

manner is included in the cost of the call. This method resulted in only

a small speedup, because of the overhead involved in massaging the data,

and because the sort routine must swap pairs of integers instead of single

integers. The integers were chosen uniformly over the range 0 to 1,000,000.

The second method was to sort an array of pointers to structures. In this
case it was assumed that the structure contained a field that would serve

as the tag. The sort program needed only to fill in this field, and not copy

the structures to a second array. This method results in dramatic speedups.

Integer keys were used, though a more complex key will work as well (in

fact, a more complex key is very likely to increase the speedup achieved).

For the priority queue and generalized priority queue tables, the input

size n is the number of commands executed. The item numbers range from

1 to n (ie. there are as many item numbers as there are commands). The

commands are not chosen with equal probability, but rather the first n/2

are weighted toward insert operations while the second half are weighted

toward the other operations, the weightings remaining the same for all runs.

This weighting is necessary in order to force a large queue.

The timing data displayed in the tables should be considered not only
relative to the overall efficiencies of the certification trail method relative

to classical time redundancy but also relative to the probabilistic analysis

given in Section 9 in which we show that when the certification-trail method

has a smaller execution time than the tlme-redundancy approach it yields

strictly superior performance. This means the certification trail method has

both a a smaller probability of error and a smaller probability of undetected
error.

10
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5.3 Convex Hull Example

The convex hull problem is a fundamental one ih computational geometry.

Our certification trail solution is based on a solution due to Graham [24]

which is called Graham's Scan. For basic definitions in computational ge-

ometry see the text of Preparata and Shamos[46]. For simpficity in the

discussion which follows we will assume the points are in so called general

position, e.g., no three points are col]near. It is not hard to remove this
restriction.

Definition 5.1 The convex hull of a set of points, S, in the Euclidean

plane is defined as the smallest convex polygon enclosing all the points.

This polygon is unique and its vertices are a subset of the points in 3'. It is

specified by a counterclockwise sequence of its vertices.

Figure 2(c) shows a convex hull for the points indicated by black dots.

The algorithm given below constructs the convex hull incrementally in a

counterclockwise fashion. Sometimes it is necessary for the algorithm to

"backup" the construction by throwing some vertices out and then contin-

uing. The first step of the algorithm selects an "extreme" point and calls

it Pl. The next two steps sort the remaining points in a way which is de-

picted in Figure 2(a). It is not hard to show that after these three steps the

points when taken in order, Pl, p2,... ,P,_, form a simple polygon; although

this polygon may not be convex. It is possible to think of the algorithm

as removing points from this simple polygon until it becomes convex. The

main FOR loop iteration adds vertices to the polygon under construction

and the inner WHILE loop removes vertices from the construction. A point

is removed when the angle test performed at line 6 reveals that it is not on
the convex hull because it falls within the triangle defined by three other

points. A "snapshot" of the algorithm given in Figure 2(b) shows that qs

is removed from the hull. The angle formed by q4,q_,p6 is less than 180

degrees. This means, qs lies within the triangle formed by q4,pl, p6. (Note,

ql = Pl-) In general, when the angle test is performed if the angle formed by

qm-1, qm, Pk is less than 180 degrees then q,_ lies within the triangle formed

by qm-l,Pl,Pk. Below it will be revealed that this is the main fact that

our certification trail relies on. When the main FOR loop is complete the

convex hull has been constructed.

Algorithm CONVEXHULL(5')

Input: Set of points, 5', in R _

11
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Figure 2: Convex hull example.

Output: Counterclockwise sequence of points in R 2 which define convex hull of S

1 Let Pl be the point with the largest z coordinate (and smallest y to break ties)

2 For each point p (except pl) calculate the slope of the line through Pl and p

3 Sort the points (except pl) from smallest slope to largest. Call them P2,...,p,_

4 ql := Pl; q2 := P2; q3 := P3; ra = 3
5 FORk=4tonDO

6 WHILE the angle formed by q,,_-l,q_,Pk is >_ 180 degrees DO ra := ra - 1 END
7 ra:=m+l

8 qm := Pk

9 END FOR

10FOR i = 1 to m DO, OUTPUT(qi) END FOR
END CONVEXHULL

First execution: In this execution the code CONVEXHULL is used.

The certification trial is generated by adding an output statement within the

WHILE loop. Specifically, if an angle of less than 180 degrees is found in the

WHILE loop test then the four tuple consisting of q,,_,q,,_-l,pz,pk is output

to the certification trail. The table below shows the four tuples of points

that would be output by the algorithm when run on the example in Figure

2. The points in the table are given the same names as in Figure 2(a). The

final convex hull points qz,..-, q,_ are also output to the certification trail.

Strictly speaking the trail output does not consist of the actual points in R 2.

Instead, it consists of indices to the original input data. This means if the

original data consists of sz, s2,..., s,, then rather than ouput the element in
R 2 corresponding to 8i the number i is output. It is not hard to code the

program so that this is done.

12
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Second execution: Let the certification trail consist of a set of four

tuples, (xl, el, bl, cl), (x2, a2, b2, c2),. •., (xr, at, b_, e,) followed by the sup-
posed convex hull, ql, q2,..., q,_. The code for CONVEXHULL is not used

in this execution. Indeed, the algorithm performed is dramatically different
than CONVEXHULL.

It consists of five checks on the trail data.

• First, the algorithm checks for i E {1,...,r} that x_ lies within the

triangle defined by ai,b_, and c_.

Second, the algorithm checks that for each triple of counterclockwise

consecutive points on the supposed convex hull the angle formed by

the points is less than or equal to 180 degrees.

Third, it checks that there is a one to one correspondence between the

input points and the points in {xl,...,x_} t9 {ql,...,q,_}.

Fourth, it checks that for i E {1,...,r), a_, b_, and c_ are among the
input points.

Fifth, it checks that there is a unique point among the points on the

supposed convex hull which is a local extreme point. We say a point

q on the hull is a local extreme point if its predecessor in the counter-

clockwise ordering has a strictly smaller y coordinate and its successor

in the ordering has a smaller or equal y coordinate.

If any of these checks fail then execution halts and "error" is output. As

mentioned above, the trail data actually consists of indices into the input

data. This does not unduly complicate the checks above; instead it makes

them easier. The correctness and adequacy of these checks must be proven.

Because of space limitations we shall not give the proof here.

Time complexity: In the first execution the sorting of the input points

takes O(nlog(n)) time where n is the number of input points. One can show

that this cost dominates and the overall complexity is O(nlog(n)).

13
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Size

10000

Basic

Algorithm
0.74

Generate

Certif.

Use

Certif.

0.11

Compare

0.79 0.03

20000 1.65 1.75 0.23 0.06

50000 4.64 4.79 0.59 0.14

100000 9.95 10.32 1.19 0.28

Size [

10000 1

20000
50000[

Table 1: Huffman Tree on Sun

Basic Generate I Use Compare

Algorithm Certif. I Certif.
1.09 0.32 0.10

2.38 2.91 0.63 0.21

7.01 8.80 1.59 0.501.32 i

Table 2: Huffman tree on 386/33

Total

Basic

1.51

3.36

9.42

20.18

Total 7o Saving
Certif.

0.93 38.41

2.05 39.28

5.52 41.40

11.79 41.57

Total] Total

Basic I Certif.

2.28[ 1.74

I 4.97 [ 3.75

_ 14.52 i 10.89

% Saving

23.68

24.55

25.00

It is possible to implement the second execution so that all five checks are

done in O(n) time. /papers/certify3/tabdata/papers/certify3/tabdataehecking
that a point lies within a triangle is a geometric calculation that can be done

in constant time. Comparing the angle formed by three points to 180 de-
grees can be done in constant time. The third and fourth checks can be

done in O(n) because the certification trail contains indices into the input

data as described above. The uniqueness of the "local extreme" can also be
checked in linear time.

5.4 Minimum Spanning Tree Example

This classic problem has been examined extensively in the literature and

an historical survey is given in [25]. Our approach is applied to a variant

Size Basic Generate Use

Algorithm Certif. CertiL
10000 1.26 1.29 0.13

20000 2.71 2.81 0.31

50000 7.41 7.48

100000 15.76 15.87

0.70

1.43
!

Compare Total! Total
Basic I Certif.

0.01 2.53 I 1.43

0.01 _5.43 [ 3.-i-3--

0.01 14.831 8.19

0.0i 31.531 i7131 -

% Saving

- 43.47

42.35

44.77

45.09

Table 3: Convex Hull on Sun
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Size

10000

20000

50000

100000

Basic

Algorithm
1.79

3.86

10.51

22.40

Generate

Certif.

i.88

4.08

11.16

23.97

Use

Certif.

0.i5

0.31

0.78

1.64

Compare

0.01

0.01

0.01

0.01

Table 4: Convex Hull on 386/33

Total

Basic

3.59

7.73

21.03

44.81

Total

Certif.

2.04

4.40

% Saving

43.18

Size

100,1000

200,2000

Basic

Algorithm
0.04

Generate

Certif.

0.05

Use

Certif.

0.01

Compare

0.00

0.10 0.12 0.02 0.00

500,5000 0.30 0.31 0.06 0.00

1000,10000 0.68 0.72 0.13 0.00

1500,15000 1.10 1.14 0.19 0.00

2000,20000 1.51 1.58 0.27 0.00

2500,25000 1.97 2.00 0.35 0.00

Table 5: Minimum Spanning Tree on Sun

Size Basic Generate Use Compare

Algorithm Certif. Certif.

100,1000 0.04 0.03 0.01 0.00

Total

Basic

0.08

0.20

0.60

1.36

2.20

3102

3.94

200,2000

500,5000

1000,10000

1500,15000

0.08

0.26

0.59

0.08

0.24

0.56

0.93 0.90

2000,20000 1.29 1.28

2500,25000 1.67 1.65

0.02

0.06

0.13

0.20

0.00

0.00

0.00

0.00

0.28 0.00

0.36 0.00

Total

Basic

0.08

0.16

0.52

1.18

1.86

2.58

3.34

Table 6: Shortest Path on Sun

Size Basic Generate Use Compare
Algorithm Certif. Certif.

10000 0.23 0.40 0.06 0.01
20000 0.51 0.86 0.13 0.01

50000 1.38 2.35 0.35 0.02

100000 2.96 4.97 0.76 0.04

Table 7: Integer sorting on Sun

Total

Basic

0.47

1.02

2.78

5.92

43.08

15

11.95 43.18

25.62 42.83

Total % Saving
Certif.

[

0.06 25.00

0.14 30.00

0.37 38.33

0.85 37.50

1.33 39.55

1.85 38.74

2.35 40.36

Total % Saving
Certif.

0.04 50.00

0.10 " 37.50 .

0.30 42.31

0.69 41.53

1110 40.86

1.56 39.53

2.01 39.82

Total % Saving
Certif.

0.47 0.00

1.00 1.96

2.72 2.15

5.73 3.20

u
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Size Basic Generate

Algorithm Certif.

10000 1.02 1.18

20000 2.16 2.49

50000 5.67 6.48

100000 1i.74 13.48

Size

10000

20000

50000

100000

Use Compare Total
Certif. Basic

0.14 0.04 2.08

0.29 0.08 4.40

0.73 0.22 11.56

1.57 0.44 23.92

Table 8: Integer Sort on 386/33

Basic

Algorithm

0.32

0.71

1.97

4.32

Generate

Certif.

0.33

0.72

1.99

4.37

Use

Certif.

0.03

0.07

0.18

0.38

Compare Total
Basic

0.01 0.65

0.01 1.43

0.02 3.96

0.05 8.69

Table 9: Pointer sorting on Sun

Total

Certif.

1.36

2.86

34.62

35.00

35.73

35.24

Total % Saving
Certif.

0.37 43.07

0.80 44.05

-5.19 - 44.69

4.80 44.76

m
i

Size

10000

20000

50000

100000

Basic

Algorithm

1.08
2.41

6.37

13.29

Generate

Certif.

1.15

2.41

6.38

13.33

Use

Certif.

0.07

0.16

0.42

0.89

Compare Total
Basic

0.03 2.19

0.07 4.89

0.22 12.96

0.43 27.01

Table 10: Pointer Sort on 386/33

Total % Saving
Certif.

1.25 42.92

7.02 45.83

14.65 45.76

w Size

10000

20000

50000

Basic

Algorithm

0.86

1.92

Generate

Certif.

0.83

1.87

Use

Certif.

0.14

0.28

Compare Total
Basic

0.01 1.73

5.32 5.37 0.69 0.02

0.01 3.85

10.64

Table 11: Data structs on Sun

Total % Saving
Certif.

0.98 43.35

2.16 43.89

6.08 42.85
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m

Size

8

16

32

64

128

256

512

Basic

Algorithm
0.075

Generate

Certif.

0.091

Use

Certif.

17.388

0.026

Total

Basic

1.808

0.151

Total

Certif.

0.117

% Saving

28.7

0.215 0.248 0.054 0.430 0.302 42.4

0.561 0.629 0.111 1.122 0.740 51.6

1.330 1.468 0.224 2.660 1.692 57.2

3.120 3.398 0.450 6.240 3.848 62.2

7.225 7.783 0.903 14.450 8.686 66.4

16.270 32.540 19.196 69.5

Table 12: Huffman Tree on 68000-based system

m

w

Size

Nodes Edges

l0 15

i0 20

i0 25

50 75

50 I00

50 125

I00 150

I00 200

i00 25O

500 750

500 I000

500 1250

1000 1500

i000 2000

I000 25O0

1500 2250

1500 3000

Basic Generate Use Total Total

Algorithm Certif. Certif. Basic Certif.

0.053 0.054 0.055 0.106 0.109

0.071 0.072 0.073 0.142 0.145

0.088 0.089 0.090 0.176 0.179

0.320 0.323 0.309 0.639 0.632

0.423 0.427 0.846 0.826

0.492

0.652

0.874

1.036

3.588

4.780

5.656

0.496

0.658

0.881

1.045

3.617

4.817

5.698

7.474 7.533

9.902 9.977

11.830 11.917

11.415 11.503

14.967 15.077

0.400

0.464

0.602

0.789

0.938

3.047

3.955

4.717

6.115

7.919

9.517

9.157

11.802

0.984 0.960

2.073

7.176

9.560

11.311

14.949

19.803

23.660

22.830

29.933

% Saving

-2.5

-1.7

-1.5

1.2

2.3

2.5

1.305 1.260 3.6

1.748 1.671 4.6

1.983 4.5

6.664

8.772

7.7

9.0

10.415 8.6

13.649 9.5

17.895 10.7

21.434 10.4

20.660 10.5

26.879 11.4

Table 13: Min Spanning Tree on 68000-based system
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of the Prim/Dijkstra algorithm [47, 18] as explicated in [54]. We provide a

definition of the problem below. For more information on the graph theoretic

terminology used in this problem and others the reader may consult [54, 17].

Definition 5.2 Let G = (V, E) be a graph and let w be a positive rational

valued function defined on E. A subtree of G is a tree, T(V I,E_), with

V _ C_ V and E' _CE. We say T spans V _ and V _ is spanned by T. If V r = V

then we say T is a spanning tree of G. The weight of this tree is Sees' w(e).
A minimum spanning tree is a spanning tree of minimum weight.

The problem is to input a graph with edge weights and output a mini-

mum spanning tree. The algorithm for this problem which has the fastest

asymptotic time complexity uses fusion trees and is given in [20]. This al-

gorithm however appears to have a large constant of proportionality. Other

asymptotically fast algorithms [22] also appear to be handicapped by large

constants of proportionality. A fuller discussion of the two algorithms we

employ for generation and use of a certification trial is given in [1].

5.5 Shortest Path Example

This is another classic problem which has been examined extensively in the

literature. Our approach is applied to a variant of the Dijkstra algorithm

[18] as explicated in [54]. We are concerned with the single source problem,

i.e., given a graph and a vertex s, find the shortest path from s to v for
every vertex v.

The algorithm for this problem which has the fastest asymptotic time

complexity uses fusion trees and is given in the same paper which we cited

earlier when considering the minimum spanning tree problem[20]. This al-

gorithm however appears to have a large constant of proportionafity. Our

solution employing the certification trail method is very closely based on the

solution we gave for the minimum spanning tree problem [1].

5.6 Huffman Tree Example

This is another old algorithmic problem and one of the original solutions

was found by Huffman[30]. It has been used extensively to perform data

compression through the design and use of so called Huffman codes. These
codes are prefix codes which are based on the Huffman tree and which

yield excellent data compression ratios. The tree structure and the code

design are based on the frequencies of individual characters in the data to
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be compressed. Here we are concerned exclusively with the Huffman tree.

See [30] for information about the coding application.

Definition 5.3 The Huffman tree problem is the following: Given a se-

quence of frequencies (positive integers) fill, f[2],..., f[n], construct a tree

with n leaves and with one frequency value assigned to each leaf so that

the weighted path length is minimized. Specifically, the tree should mini-

mize the following sum: _IieLEAF len(i)f[i] where LEAF is the set of leaves,

len(i) is the length of the path from the root of the tree to the leaf li, f[i] is

the frequency assigned to the leaf li.

The method we employ to generate and use a certification trail is detailed

in the following technical report [2].

5.7 Sorting Example

This important problem has a massive literature. In this section we will

discuss how to apply the certification trail approach to the sorting problem.

Let us assume that the sorting algorithm takes as input an array of n ele-

ments and outputs an array of n elements. The algorithm is supposed to

place the data into non-decreasing order.

To design a certification trail algorithm we must discover the nature of

the data that should be included in the certification trail to allow quick

computation of the final output sorted array. Suppose that we decide to

use the output array itself as the certification trail. We note that it is easy

to check that this array is in non-decreasing order by simply performing a
single pass over the array. Unfortunately, it is considerably more difficult to

make sure that this array contains exactly the same elements as the original

input array. Indeed, this problem has a lower bound time complexity of

fi(nlog(n)) in a comparison based model.

Because of this difficulty we use the permutation of the elements defined

by the input and output data arrays as the certification trail. To compute

this permutation we allocate a new array of size n called permute which

is initialized by setting its ith element to i. (Alternatively, we add a new

field to pre-existing structures when structures are being sorted.) Each time

the sort algorithm exchanges two elements the corresponding elements in

the permute array are also exchanged. (If structures are being used then

this happens automatically.) This approach works with all sort algorithms

which are based on exchanging array elements. The code below shows how
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thepermutearrayisusedto rapidly recomputethefinal sortedoutputarray
and howthe permutearrayitself is checked.

Algorithm SORTUSINGTRAIL
Input: Arrays indata[1..n] and permute[1..n]

Output: outdata[1..n] containing the data in indata sorted into non-decreasing order

m
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The first part of the algorithm checks that the permute values are in the

proper range and constructs the output array.

1 FORi:= ltonDO

2 IF permute[i] > n or permute[i] < 1

3 THEN OUTPUT("Error: not a permutation") STOP

4 ELSE outdata[i] := indata[permute[i]]
5 END FOR
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m
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The next part of the algorithm checks that the output array is properly
ordered.

6 FOR i := 2 to n DO

7 IF outdata[i- 1] > outdata[i] THEN OUTPUT("Error: decreasing value") STOP
8 END FOR

The final part of the algorithm checks that the permute array defines a

proper permutation, i.e., each element is mapped to exactly one element.

9 FOR i := 1 to n DO present[i] = FALSE END
10 FOR i := 1 to n DO

11 IF present[permute[i]] = TRUE

12 THEN OUTPUT( "Error: not a permutation") STOP

13 ELSE present[permute[i]] := TRUE
14 END FOR

END SORT USING TRAIL

Our experimental work on the Sun was based on a variant of quicksort

[26] which is called quickersort [50]. The implementation of this algorithm

that we used was provided by a Berkeley UNIX software distribution for

the Sun. Our experimental work on the IBM PC was based on a quicksort

algorithm implemented as part of a Gnu library of functions.
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6 Answer-Validation Problem for Abstract Data

Types

The next few sections of this paper are concerned with the answer-validation

problem for abstract data types. This kind of problem was originally pro-
posed in [3] and provides a basis for applying the certification-trail method

to wide classes of algorithms. Because of space limitations we will not discuss
the details of how this can be done.

Below, we define the answer-validation problem. Next, we give two ex-

ample algorithms for the answer-validation problems. The first algorithm

is for a priority queue which allows insert, min and deletemin operations.

The second algorithm is for a priority queue which allows insert, rain, delete

and deletemin operations. In the next section experimental data on the

execution times of these algorithms is presented.

For each abstract data type we define an answer-validation problem. In-

tuitively, the answer validation problem consists of checking the correctness

of a sequence of supposed answers to a sequence of operations performed on

the abstract data type. More formally, the input to the answer-validation

problem is a sequence of operations on the abstract data type together with

the arguments of each operation. In addition, the sequence contains the

supposed answers for each of the operations which return answers. In par-

ticular, each supposed answer is paired with the operation that is supposed

to return it. Examples of such inputs are given in the columns labelled
"Operation" and "Answer" table 15.

The output for the answer-validation problem is the word "correct" if

the answers given in the input match the answers that would be generated

by actually performing the operations. The output is the word "incorrect"

if the answers do not match. It is also useful to allow the output word to

say "ill-formed'. This output is used if the sequence of operations is ill-

formed, e.g., an operation has too many arguments or an argument refers
to an inappropriate object.

The answer-validation problem is similar to the idea of an acceptance

test which is used in the recovery-block approach [48, 6] to software fault

tolerance. The main difference is that an answer-validation problem is de-

pendent upon a sequence of answers, not just an individual answer. Hence,

if an incorrect answer appears in the sequence, it may not be detected imme-
diately. It is guaranteed, however, that an incorrect answer will be detected

at some point during the processing of the entire sequence. By allowing
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for this latency in detection, it is possible to create a much more efficient

procedure for solving the answer-validation problem.

The most important aspect of the answer-validation problem is that it

is often possible to check the correctness of the answers to a sequence of

operations much more quickly than actually calculating what the answers

should be from scratch. In other words, the answer-validation problem has a

smaller time complexity than the original abstract-data-type problem. This

speedup is very useful in fault-detection applications.

It is possible to run an answer-validation algorithm for some abstract

data type concurrently with some algorithm which uses the abstract data

type. The answer-validation algorithm could act as a monitor making sure

that all interactions with the abstract data type are handled correctly. This

is valuable because many algorithms spend a large fraction of their time

operating on abstract data types. Note, the overhead of this monitor is less

than the overhead of actually performing the data-type operations a second
time.

7 Answer Validation for Priority Queue

We will first consider the priority-queue abstract data type which allows

only three operations: insert, rain and deletemin. An example of a sequence

of such operations appears in table 14. Many different data structures can

be used to implement priority queues including heaps [61]; and balanced

search trees such as AVL trees [51, red-black trees [271, or b-trees [13]. It

is possible to process a sequence of O(n) operations in O(nlog(n)) time
using the data structures above. Furthermore, there is a lower bound of

f/(nlog(n)) because it is possible to sort using a priority queue. Remark-

ably, the answer-validation problem can be solved using only O(n) time, as
documented below.

The algorithm which we present in this section is the same as that given

in [3]. It is necessary to include a description of this algorithm because the

algorithm in the next section (which has not appeared before) builds on this
algorithm.

Each operation is time-stamped, i.e., the operations are assigned integers

sequentially starting with 1 which is easy to do with a counter. The answer-

validation algorithm uses a stack called answerstack. The contents of this

stack are illustrated in table 14. The top of the stack is on the left in table 14.

Let us consider the kinds of tests that an answer-validation algorithm

22
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Time Operation Answer Insert time

1 insert(6,300)

2 insert(2,404)

3 insert(3,250)

4 deletemin (3,250) 3

5 insert(10,248)

6 insert(12,245)

7 insert(4,260)

8 min (12,245) 6

9 insert(13,140)

10 insert(5,142)

11 deletemin (13,140) 9

12 deletemin (5,142) 10

13 deletemin (12,245) 6

14 deletemin (10,248) 5

15 deletemin (4,260) 7

Stack used in vahdation

(3,250,4)

(12,245,8), (3,250,4)

(13,140,11),

(5,142,12),
(12,245,8), (3,250,4)

(12,245,8), (3,250,4)

(12,245,13),(3,250,4)

(10,248,14), (3,250,4)

(4,260,15)

Table 14: Sequence of Priority Queue operations illustrating answer valida-
tion algorithm
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for a priority queue might perform. Suppose (i,k) is the answer to some

rain or deletemin operation. Further, suppose (i/,k _) was the answer to a

previous rain or deletemin operation. If the priority queue is correct then

either (i,k)_(i',k') or (i,k) was inserted after the answer (i',k') was given. **

multiple insertions possible?* This suggests that the time of insertion for an

element and the time of an answer should be recorded and the algorithm

below does this. Unfortunately, if an algorithm compares an ordered pair

which has been given as an answer against all previous answers then the

algorithm complexity is at least O(m2). To avoid this a stack called the

answerstack is used. The answerstack was designed to allow many compar-

isons to be done implicitly and thus the overall complexity of the many tests
is reduced.

Algorithm for Answer Validation for Priority Queue

Input: Sequence of m operations together with arguments and supposed

answers for the priority-queue data type.
Output: "correct", "incorrect" or "ill-formed"

Declarations: Array called inserttime indexed by item number. Array ele-

ments contain either "absent" or a time-stamp. Array called keyvalue in-

dexed by item number. Array elements contain either "absent" or a key

value. Initially, each element in these two arrays contains "absent". Stack

of ordered triples called answerstack. Each ordered triple has the following

form: first element is an item number, second element is a key value, and

third element is a time-stamp, answerstack is initially empty.

First phase: In this phase we process each operation as it appears serially
using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i,k): If inserttime[i]_"absent" then output "ill-formed" and stop.

Otherwise, let inserttime[i] = currenttime and let keyvalue[i]=k.

rain (i,k): (where (i,k) is the supposed answer to the deletemin oper-

ation.) If inserttime[i]="absent" or keyvalue[i]_k then output "ill-formed"
and stop.

Otherwise, let (i/,k _) be the item number and key value of the triple on

the top of answerstack (if there is one). Repeatedly pop the stack until

(i,k)<(i',k') or until answerstack is empty.

If answerstack is empty then push the triple (i,k,currenttime) onto an-
swerstack and process the next priority queue operation.
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If answerstack is non-empty then let the top element be (il,kl,answertimel).

If inserttime[i]<answertime r then output "incorrect" and stop. Otherwise,

push the triple (i,k,currenttime) onto answerstack and process the next pri-

ority queue operation.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin

operation.) Perform the same actions as those described for the min opera-

tion. However, just before processing the next priority queue operation, let

inserttime[i]="absent" and let keyvalue[i]="absent".

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

Scan the array inserttime and for each item number for which inserttime[i] _"absent"

construct an ordered triple (i,keyvalue[i],inserttime[i]). Call this set of or-

dered triples remainders.

Use a bucket sort to sort the triples in remainders by their time-stamps, i.e.,

the third element of the ordered triple.

Merge the triples in remainders together with the triples in answerstack so

that they are all ordered by their time-stamps, i.e., the third element of the

ordered triple.

Scan the combined triples to determine if there exist two triples which satisfy

the following: inserttime[i]<answertime' and (i,keyvalue[i])<(i',k'); where

one triple is from remainders and has the form (i,keyvalue[i],inserttime[i])

and where the other triple is from answerstack and has the form (il,kl,answertime_);

If these two triples exist then output "incorrect" and stop. Otherwise output

"correct" and stop.

Theorem 7.1 The algorithm for answer validation of the priority queue

abstract data type is correct.

Theorem 7.2 The answer validation algorithm for priority queue has a

time complexity of O(n) .for processing a sequence of O(n) operations.

For proofs of these theorems see [3].
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8 Answer Validation for Generalized Priority Queue

We next consider the priority-queue abstract data type which allows four

operations: insert, min, deletemin, and delete. An example of a sequence of
such operations appears in table 15.

The algorithm to solve the validation problem for this data type is an en-

hanced version of the algorithm given above for the data type which allowed

only three priority-queue operations.

Algorithm for Answer Validation for Generalized Priority Queue

Input: Sequence of rn operations together with arguments and supposed

answers for the priority-queue data type.

Output: "correct", "incorrect" or "ill-formed"

Declarations: All the declartions used in the earlier algorithm are used again.
In addition, a collection of sets called stacksets are used. Each set in stacksets

consists of a set of item numbers (possibly the empty set). There is a one-to-

one correspondence between the sets in stacksets and the ordered triples in

answerstack. Initially, answerstack consists solely of the ordered triple (0,-

oo,-1). Also initially, stacksets contains exactly one set which is the empty

set and which corresponds to (0,-oc,-1).

First phase: In this phase we process each operation as it appears serially

using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i_k): Perform the same actions as those given earlier for the insert

operation. In addition, add the item number i to the set in stacksets corre-

sponding to the top element in answerstack.

min (i,k): (where (i,k) is the supposed answer to the deletemin opera-

tion.) Perform the same actions as those given earlier for the min operation.

In addition, if any elements are popped off of answerstack then the sets in

stacksets corresponding to these elements are unioned together to form a

new set. This new set is placed in correspondence with the new top element
of answerstack.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin

operation.) Perform the same actions as those given for the rain opera-

tion described immediately above. In addition, remove the item number

i from the set in stacksets which contains it. Further, before processing

26
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Time Operation Answer Insert time Stack used in validation

1 insert(S,310) (0,-_c,-1)

{5}
2 insert(6,210) (0,-_,-1)

{5,6}
3 insert(8,280) (0,-oo,-1)

{5,6,8}
4 min (6,210) 2 (6,210,4)

• {5,6,s}
5 insert(9,190) (6,210,4)

{5,6,s,9}
6 min (9,190) 5 (9,190,6), (6,210,4)

{5,6,8,9}

7 insert(2,275) (9,190,6), (6,210,4)

{2}, {5,6,8,9)
8 delete(8) 3 (9,190,6), (6,210,4)

{2}, {5,6,9}

9 insert(12,170) (9,190,6), (6,210,4)

{2,12}, {5,6,9}

10 insert(14,400) (9,190,6), (6,210,4)

{2,12,14}, {5,6,9}

11 deletemin (12,170) 9 (12,170,11), (9,190,6), (6,210,4)

{2,14}, {5,6,9}
12 insert(3,290) (12,170,11), (9,190,6), (6,210,4)

{3}, {2,14}, {5,6,9}

13 insert(7,330) (12,170,11), (9,190,6), (6,210,4)

{3,7}, {2,14}, {5,6,9}

14 insert(15,200) (12,170,11), (9,190,6), (6,210,4)

{3,7,15}, {2,14}, {5,6,9}

15 delete(9) 5 (12,170,11), (9,190,6), (6,210,4)

{3,7,15}, {2,14}, {5,6}
16 deletemin (15,200) 14 (15,200,16),(6,210,4)

{2,3,7,14}, {5,6}

17 delete(7) 13 (15,200,16),(6,210,4)

{2,3,14}, {5,6}

18 deletemin (6,210) 2 (6,210,18)

{2,3,5,14}
19 delete(14) 10 (6,210,18)

{2,3,5}

t_

m

Table 15: Sequence of Priority Queue operations illustrating answer valida-
tion algorithm
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the next priority queue operation, let inserttime[i]="absent" and let key-

value[i] = "absent".

delete(i): If inserttime[i]="absent" or keyvalue[i]="absent" then output

"ill-formed" and stop.

Otherwise, let inserttime=inserttime[i] and let k=keyvalue[i]. Next, let

inserttime[i]="absent" and let keyvalue[i]="absent'.

Now, let (i_,k',answertime I) be the ordered triple which corresponds to

the set in stacksets containing item number i. Next, remove item number i
from the set which contains it.

If answertime'>inserttime and (i,k)>(i',k') then output "incorrect" and

stop.

If answertime'>inserttime and (i,k)<(i',k') then process the next priority

queue operation.

If (i_,k_,answertime _) is the top element of answerstack then process the

next priority queue operation.

Let (i",k",answertime") be the element immediately above (i',k',answertime')
on answerstack.

If (i,k)>(i",k") then output "incorrect" and stop. Otherwise, process the

next priority queue operation.

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

For this phase one performs the same operations as the second phase de-
scribed earlier.

Theorem 8.1 The algorithm above for answer validation of the priority

queue abstract data type is correct.

Theorem 8.2 The answer validation algorithm above for priority queue has

a time complexity of O(n) for processing a sequence of O(n) operations.

Proofs omitted for space reasons. It is clear that a priority queue with

operations insert, delete, max, deletemax can also be validated in linear time

by changing the appropriate signs in the algorithm above.

Definition 8.3 Consider a sequence of priority queue operations together

with arguments and supposed answers. The sequence may contain the

following operations: insert, delete, min, deletemin, max, and deletemax.
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Based on this sequence we define a new sequence called a minimum sequence.

This sequence differs from the original sequence as follows: Each max op-
eration and answer pair is removed from the sequence. Each deletemax

operation and answer pair is replaced by a delete(i) operation where i is the

item number given in the answer to the deletemax operation. Each other
operation remains the same.

We also define a maximum sequence. This sequence differs from the

original sequence as follows: Each rain operation and answer pair is removed

from the sequence. Each deletemin operation and answer pair is replaced

by a delete(i) operation where i is the item number given in the answer to

the deletemin operation. Each other operation remains the same.

Theorem 8.4 Consider a sequence of priority queue operations together

with arguments and supposed answers. The sequence may contain the fol-

lowing operations: insert, delete, rain, deIetemin, ma.x, and deletemax. The

answers given for this sequence are correct if and only if the answers given

for the corresponding minimum and maximum sequences are both correct.

This theorem allows us to define an algorithm which solves the answer-

validation problem for general priority queue.
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9 Probabilistic Model

We will now present a simple probabilistic model with accompanying analy-
sis which will permit a comparison between of our certification-trail method

and the classical time-redundancy approach [32, 52]. The analysis shows
that when the certification-trail method has a smaller execution time than

the time-redundancy approach it yields strictly superior performance. This

means the certification trail method has both a a smaller probability of er-

ror and a smaller probability of undetected error. Surprisingly, the analysis

also reveals the intriguing result that the certification-trail method often can

display superior performance even when the method has the same execution

time or a longer execution time than the time-redundancy approach. This

superior behavior stems from the typical assymetry of the execution times
of the first and second executions in the certification-trail method.

We make the following assumptions.

i. Errors are distributed exponentially with parameter ),.
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ii. If errors occur during only one phase of the execution, then they are
detected.

iii. If errors occur in both phases of an execution the)" are not detected.

For solutions to a problem with run times a and b, we therefore have:

© =

w

= =

i

Pr{correct} = e-_(_+b)

Pr{detected} = e-_(1 _ e -_b) + e-_b(1 _ e-_)

= e -_a + e -)tb _ 2e-),(_+b)

Pr{undetected} = (1- e-_)(1- e -_b)

= 1 - e -_ - e -:_b + e-_(_+b)

= 1 - Pr{correct}- Pr{detected)

Given two solutions for a problem, we say that the first is strictly superior
to the second iff:
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Prl{correct} >_ Pr2{correct} and Pr,{undetected} < Pr2{undetected}

or

Prl{correct} > Pr2{correct} and Prl{undetected} <_ Pr2{undetected}

This implies that the run time of the first solution is no greater than
that of the second solution.

Observation 1 Suppose there are two solutions (using certification trails)

to a problem, such that each solution runs in two phases, and the combined

run times of phases is the same for both solutions. Then the solution with

the greater time imbalance between phases is strictly superior.

Proof: Let 2a = the run time. Let a+b the run length of the first

phase of the first method, and a + c be the run time of the first phase of

the second method. Then the second phases have times of a - b and a - c

respectively. Assume b < c.

Since the total run time is the same for both solutions, we have Prl {correct} =

Pr2{correct} = e -_2a, so we need only show that Prl {detected} < Pr2{detected},
ie.
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e-_(_+O(1 _ e-_(=-O) + e-a(=-O(1 _ e-_(=+O)

e-_(_+b) + e-_(_-O

e -'kb + e )_b

Setting x = e_b and y = e _c we want

< e-_(_+c)(1 _ e-),(_-¢)) + e-_(_-c)(1 _ e-_(_+_))

< e-_(_+_) + e-_(_-_)

< e -he + e _c

1 1
x+- < y+ -

x y
1 1

< y-x
x y

y-x
< y-x

xy

forl_<x<y
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Corollary 1 Given a basic algorithm for a problem, a certification trail

method is superior to running the basic algorithm twice if the total run time

is no greater than twice that of the basic algorithm.

The above statements apply to the situation of a single execution of a
solution. A more interesting case is to iterate the solution until no errors are

reported, that is we either arrive at the correct answer, or have undetected
errors.

Let Prit_{correct) denote the probabihty of finding a correct solution

in the iterated scheme and Prit_{undetected} denote the probability of

accepting an incorrect run.

Note that we repeat a run only when errors are detected, so if we obtain

the correct answer on the n- th run, the previous n - 1 runs must have
resulted in detected errors. Thus it is clear that:

Prite,{correct)

Similarly,

= Pr{correct} _Pr{detected}
i=O

Pr{correct}

I - Pr{detected}

Pr {undetected}
Briton{undetected} = 1- Pr{detected}
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For the iterated scheme, we will say that one method is superior to

another if the probability of obtaining the correct answer is larger. Obviously
if a method is superior in the single run sense, it must be superior in the

iterated case. However it is possible for one method to be superior to another

in the iterated scheme, but not in the single run scheme. This means that

a certification trail method may be better than running a basic algorithm
twice, even if the certification trail takes longer to run!

Suppose we have a basic algorithm A with running time a for a particular

problem, and a certification trail method with phases running in times b and

c. Given b, how small must c be, for the certification trail to be superior?
We require:

Prcert{correct}

1 - P%e_t{detecled}

e-_(b+c)

1 - e -_b- e -_ + 2e-_(b+_)

e-_(b+_) _ 2e-_(_+b+_)

e-_C(e-'Xb + e -'_2a _ 2e-_(_+b))

> Prb_i_{eorrect}l - Prb_,i_{deteeted}

e-- )t2a

>
1 - 2e -)_a -I-2e -_2a

> e-_2a - e-_(2a+b) -- e-_(2a -{-c)

> e- 2 (1 _

Note that b > a, so e -'xb + e -_2_ - 2e-_(_+b) must be positive. So,

e -)_c > e-'X2a(1 _ e-_b)

e -ab + e-_(1 _ e-_b)

1 e-_2=(1 - e -*xb)
c < -_ln

e -),b + e-'_2_(1 _ e-_b)

Since the argument to In is strictly between 0 and 1, c is well defined for
any choice of a, b, and )_.

In addition to the probability of correctness, we would like to know the

expected running time using the iterated approach. Fortunately, this is
easily determined.

Our probability of stopping on a particular execution is Pr{correct} +
Pr{undetected} = 1 - Pr{detected}. Therefore with that probability we

stop on the first execution, with probability Pr{detected}(1- Pr{detected})
we stop on the second execution, and in general we stop on the nth execution

with probability (1 - Pr{detected})(Pr{detected}),_-_. This gives us an
expected number of iterations of,
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(1 - Pr{detected}) _(i + 1)Pr{detected} _
i=0

Now,

_(i ÷ 1)x'- 1
i=o (I- x)2

so we find that the expected number of iterations is,

1 - Pr{detected}

Multiplying the run time of a single iteration will give us the expected

running time.

Table 16 shows information for running a basic algorithm. The run time

of a basic algorithm is set to 1 unit of time. The basic algorithm is run

twice and the results compared, we assume that comparator is fast enough

so that the time it takes is negligible (this is justified by the experimental

results), and that it is error free. We compute

i. Prob. Correct - The probability that both phases are error free.

ii. Prob. Detected - The probability that exactly on of the phases contains

an error.

iii. Prob. Undetected - The probability that both of the phases contain
errors.

iv. Iterated Prob Correct - If the basic algorithm is iterated (each itera-

tion is two runs), this is the probability that the terminating result is
correct.

V. Expected Runtime - The expected run time of the algorithm in the

iterated model. For the basic algorithm this is twice the expected
number of iterations.

Tabel 17 illustrates the "breakeven" point for the certification trail ap-

proach. Given a value for A and a run time b of a trail generating algorithm.

The breakeven point for the run time of the trail checking algorithm is the
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0.01

0.10

1.00

Basic Prob Prob. Prob. Iter. Expected

Algorithm Correct Detected Undetected Prob. Runtime
Correct

1 0.980199 0.019702 0.000099 2.0401970.999899

0.9890601 0.818731 0.172213 0.009056 2.416081

1 0.135335 0.465088 0.399576 0.253005 3.738935

Table 16: Balanced Probabifites

Generate Trail Breakeven Trail CheckerX

0.01

0.01

0.01

0.10

0.10

0.10

1.00

1.00

1.00

1.10

1.50

2.00

1.10
1.50

2.00

1110

1.50

2.00

0.909050

0.666111

0.498750

0.908683

0.661128

0.487505

0.905504

0.614107

0.379885

Table 17: Certification checker breakeven points

point at which the iterated probability of correctness is the same as for the

"basic" algorithm (which has a run time of 1).
Run times less than this will result in the certification trail solution being

superior. It is interesting to notice that in the total length of the solution at

the breakeven point is greater than 2, ie. running the basic algorithm twice.

Table 18 is similar to the first one, the difference being that this examines

the behavior of certification trail methods for different run times of the two

phases. The meaning of the other columns is identical to the meaning in the

table for basic algorithms. Of interest is the row ,k = 1.00, b = 1.50, c = 0.25.

Compare this with the first table for ,k = 1.00. We see that the certification

method has a greater probability of being correct for a single run and the
total run time is shorter than twice the basic algorithm, yet the expected

iterated run time is larger!

10 Fault Injection Experiments

A series of hardware fault injection experiments have been conducted during

which combinations of the address, data, and control lines of a Motorola

m

w
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)_ Generate Use

Certif. Certif.

0.01 1.10 0.25

0.01 1.10 0.50

0.01 1.10 0.75

0.01 1.50 0.25

0.01 1.50 0.50

0.01 1.50 0.75

0.01 2.00 0.25

0.01 2.00 0.50

0.01 2.00 0.75

0.10 1.10 0.25

0.10 1.10 0.50

0.10 1.10 0.75

0.10 1.50 0.25

0.10 1.50 0.50

0.10 1.50 0.75

0.I0 2.00 0,25

0.10 2.00 0.50

0.10 2.00 0.75

l.O0 1 .I0 0.25

1.00 I .I0 0.50

1.00 l .lO 0.75

1.00 1.50 0.25

1.00 1.50 0.50

1.00 1.50 0.75

1.00 2.00 0.25

1.0o 2.o0 ....... 0.50
1.00 2.00 0.75

Prob Prob. Prob. Iter. Expected

Correct Detected Undetected Prob. Runtime

Correct

0.986591 0.013382 0.000027 0.999972 1.368311

0.984127 0.015818 0.000055 0.999945 1.625716

0.981670 0.018248

0.982652 0.017311

0.980199 0.019727

0.977751 0.022138

0.977751 0.022199

0.975310 0.024591

0.000082 0.999917 1.884387

0.000037 0.999962 1.780827

0.000074 0.999924 2.040248

0.000111 0.999886 2.300937

0.000049 0.999949 2.301082

0.000099 0.999899 2.563028

0.972875 0.026977 0.000148 0.999848 2.826245

0.123712 0.002572 0.997065 1.5405900.873716

0.852144 0.005080 0.994074

0.259240

1.8664900.142776

0.831104 0.161369 0.007527 0.991025 2.205976

0.839457 0.157104 0.003439 0.995920 2.076175

0.818731 0.174476 0.006793 0.991771 2.422703

0.798516 0.191419 0.010065 0.987553 2.782653

0.798516 0.197008 0.004476 0.994426 2.802021

0.778801 0.212359 0.008841 0.988776 3.174033

0.759572 0.227330 0.013098 0.983049 3.559087

0.593191 0.147568 0.637254 3.318513

0.201897 0,535609 0.262495

0.157237 0.490763 0.352000

0.173774 0.654383 0.171843

0.135335 0.558990 0.305674

0.105399 0.484698 .0.409903

0.105399 0.703338

0.434755

0.308770

0.502793

0.306876

0.204539

0.355283

3.445370

0.082085

0.063928

3.632888

5.063409

4.535047

4.366374

7.5843790.191263

0.577696 0.340219 0.194374 5.919905

0.479846 0.456226 0.122902 5.286897

Table 18: Unbalanced Probabilites
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M68000-based target system were pulsed with selected signals of various

types and durations while in the process of executing algorithms. In addition

to the MC68000 microprocessor which served as the cpu, the target also was

comprised of 512K bytes of RAM, 512 bytes of ROM, and numerous I/O
modules to support serial and parallel communication. A timer module is

also included in the target which uses the 4Mhz clock as a reference so as

to provide execution time data for experiments. Finally, a simple operating

system is resident in the ROM of the target which provides programming
and operational support.

The fault injection testbed on which these experiments were performed is

illustrated as the configuration shown in Figure 3. In addition to the target

system, the fault injection testbed contains other modules which perform
the fault injection and data acquisition functions under instruction from

the Operations Control Console. By means of RS232C, SCSI, and GPIB

interfaces, a Macintosh IICX serves as the Operations Control Console per-

mitting fault injections to be precisely executed and resulting error data to
be recorded for later analysis by a SUN SPARCstation 2.

The Operations Control Console also communicates over a VMEbus with

the Testbed Controller which is responsible for overall testbed operation.
The primary component of the Testbed Controller is a MC68030-based unit

with 8 Mbytes of SRAM to store error data from fault injection runs as

communicated to it over the VMEbus from the data acquisition module.

The Testbed Controller also is similarly responsible for the operations of

the fault injection module as determined by commands from the Operations
Control Console.

The fault injection module and the data acquisition module have access

via edge connector pins to the lines of the target system selected for injection

and monitoring, respectively. The fault injections are precisely triggered af-

ter some operator determined delay following the appearance of an operator
pre-selected set of bits on either the address lines of the address bus or the

data lines of the data bus. Similarly, the durations and frequencies of the

injections are also controlled by the operator. The injections emanate from

a bank of programmable function generators included in the fault injection

module. The precision with which fault conditions are triggered and injected

permits the resulting error conditions which are observed to be repeated (if
necessary) for further monitoring/analysis. The data acquisition module is

also triggered by the same address or data bits that activated the fault injec-

tion module. However, there is no delay associated with the data acquisition

function; transfer of the signals on the lines being monitored by the data
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acquisition module to the memory of the Testbed Controller commences

immediately the data acquisition module's activation. Data monitored by
the data acquisition module is transmitted directly onto VME bus and then
written into the SRAM of the Testbed Controller.

10.1 Fault injection and error classification in MC68000 tar-

get system

To generally indicate the details of the fault injection experiments using the

target system, the injections and resulting errors can be summarized and

displayed at the Operations Control Console as illustrated in Figure 4.

In the example illustrated in Figure 4, the trigger address for the injection

was selected by the operator to be address 1019E (hexadecimal) in the first

version of Huffman tree program which was to generate both the output

and the certification trail. The actual injection consisted of holding the

lower 4 bits of the data bus at logical zero starting 2 microseconds after

the recognition of the trigger address by the fault injection module and

then maintaining the logical zero on these lines for various durations lasting
between 1 and 10 microseconds. For this example, we see that 5 distinct

error conditions resulted depending on the duration of the injection. The

details of data errors classified as type 2 and type 3 are beyond the scope of

this discussion. Suffice it to say that each such type of data error observed

in this particular experimental run could be interpreted as an inconsistent

labeling of nodes in the certification trail passed to the second program. In

each case, however, it should be emphasized that the execution of the second

program utilizing the certification trail detected the error. The other errors

listed in Figure 4 can be categorized as address errors and illegal instructions.

Our purpose in presenting Figure 4 is only to illustrate an example of

a fault injection run with a subsequent error analysis and classification. In

general, the errors resulting from injections into the target system could be
classified as:

• No error.

• Data output errors

• Certification trail errors

* Addressing errors

* Data value errors
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L XXXX XXX0 0 us .I us no error
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.2 no error

.3 no error

.4 ADDR TRAP ERROR
•5 ADDR TRAP ERROR
1 ADDR TRAP ERROR
2 ADDR TRAP ERROR
4 ADDR TRAP ERROR
4.5 ADDR TRAP ERROR

5 data error.2
Cert[flcation Error:

5.5 data error.2
Cert[flcation Error:

6 data_error.3

Certification Error:
7 data_error.3

Certification Error:
8 data_error.3

Certification Error:
9 data_error.3

Certification Error:
I0 ILLEGAL INSTRUCTION

Inconsistent Labels

Inconsistent Labels

Inconsistent

Inconsistent

Inconsistent

Inconsistent

Labels

Labels

Labels

Labels

Figure 4: Example of output displayed at Operations Control Console for

fault h_jection run for Huff'man tree aJgorithm program
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• Halt generated

• Reset generated

• Non-termination of program

• Program mutilation

Currently, the testbed tools are being expanded to produce automated

injections using suites of fault conditions on the target system.

Software fault injection experiments were also performed in which in-

structions, data, and stack contents were modified using both the Sun Sparc-

station and the 386 machine with which the previously detailed timing data

was collected. The details of these fault injection experiments will be pre-

sented in a companion document.

11 Concluding Discussion

This paper experimentally supplements two previous FTCS papers [1, ?]

which theoretically explore the new fault tolerance technique referred to as

the certification trail method. We have presented experimental timing data

which illustrates the advantages of the certification trail technique over clas-

sical time redundancy. We have further presented analytical results which

further support the significance of the certfication trail technique.
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1. The Experimental System Overview

This system provides an experimental environment for recording and ana-

lyzing upset data in computer systems. This chapter provides the information

on the system configuration and general hardware description.

l

1.1 System Configuration

This experimental system is mainly based on the VMEbus and controlled

by the 68030 CPU board. The VMEbus provides a master-slave, asyn-

chronous non- multiplexed data transfer medium. The target system (CPU

Under Test) and the Fault Injection Module are connected by its local bus.

Fig.l.1 shows the experimental configuration. This system's features in-
clude:

• 68030 CPU Board

• Up to 8 Mbyte SRAM Memory Modules

• Floppy Disk and SCSI Bus Controller (FDC/SCSI)

• 80 Mbyte Hard Disk and 3.5" Floppy Disk Drive

• OS-9 Operating System

• Chassis with power supply, cooling fans, and motherboard

• Data Acquisition Module

• CPU Under Test (MC68000 Educational Computer Board)

• Fault Injection Module

• (GP-IB I/F Controller)

• (SUN SPARCstation)
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1.2 General System Description

This section briefly describes the general description of each module of the

experimental system. For detailed information, refer to the user's manuals

on specific modules.

• 68030 CPU Board

- SYS68K/CPU-33XN (Force Computers Inc.)

- 68030 CPU with 16.7 MHz clock frequency.

- Not equipped with the Floating Point Coprocessor.

- 32-bit high speed DMA controller for data transfers.

- 1 Mbyte of shared dynamic RAM.

- Two multiprotocol serial I/O channels.

- Up to 2 Mbyte EPROM and up to 512 Kbyte SRAM/EEPROM.

- Real Time Clock with calendar and on-board battery backup.

- Full 32 bit VMEbus master/slave interface.

• Memory Module

- SYS68K/SRAM-6 (Force Computers Inc.)

- 2 Mbyte SRAM on SRAM-6.

- Battery backup for SRAM devices.

- 55ns(typical) Read/Write Access Time.

- Jumper selectable access address and address modifier code.

- VMEbus intereface supporting 32 data and 32 address lines.

• Floppy Disk and SCSI Bus Controller

- SYS68K/ISCSI-1 (Force Computers Inc.)

- 68010 CPU for local control.

- 68450 DMA Controller for local transfers.

- SCSI bus interface with the NCR5386S SCSI bus controller.



- SHUGART compatible floppy interface with the WD1772 FDC.

- All I/O signals available on P2 connector.

- VMEbus interface supporting A24:D16, D8.

• Mass Storage Module

- SYS68K/MSM-84 (Force Computers Inc.)

- Only VME P1 backplane is required.

- 64 Pin flat cable is used to connect P2 of the ISCSI-1.

- Floppy Disk Driver (Toshiba ND352)

• Disk Size and Capacity: 3.5", 1.0 Mbyte

• Number of Tracks: 160

• Access Time: 79 ms (average)

- Hard Disk (Quantum PRO80S)

• Disk Size and Capacity: 3.5", 84 Mbyte

• Number of Cylinders and Heads: 834, 6

• Seek Time: 19 ms (average)

• OS-9 Operating System

- Professional OS-9 (Microwase Systems Corporation)

- Multitasking, real time operating system.

- UNiX-like shell and a hierarchical directory/file structure.

- C Compiler, Assembler/Linker, and User-state Debugger.

- #MACS screen-oriented text editor.

• Chassis with power supply, cooling fans, and motherboard

- SYS68K/TARGET-32 (Force Computers Inc.)

- 19", 7U chassis.

- 500 W power supply to drive VMEbus and mass storage memory.

- Cooling systems with four fans.

- 20 slot J1-J2 VMEbus Motherboard.
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• Data Acquisition Module

- Up to 8 Mbyte address space.

- Jumper selectable address modifier code.

- 32 Input Channels with data selectors.

- VMgbus compatible data transfers supporting A24:D32, DH.

- VMEbus Master bus control (Non-slot 1)

• CPU Under Test

- MC68000 Educational Computer Board (Motorola Inc.)

- 4 MHz MC68000 16-bit CPU.

- 32 Kbyte of DRAM and 16 Kbyte firmware ROM/EPROM mon-
itor.

- Two serial ports provided for a terminal and a host.

• Fault Injection Module

- Hardware fault injections on IC pin lines.

- Single/multiple faults of stuck/bridging types with fault duration

varying from 250 ns to _s-. (::,_'_S •

- Application program generated fault injection.

w

w
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1.3 System Customization

This section describes the system customization required to implement

the upset analysis experimental system. This also provides information on
the programming of peripherals.

* SYS68K/CPU-33XN

- 0S-9/68000 * EPROM Installation

* Remove VMEPROM 2 and install EPROMs for OS-9.

* High q Socket J6, Low q Socket 34

- EPROM Type Selection

* 27512 EPROM

* Jumperfield BI: 1 to 12, 6 to 7

- Interfacing PI/T2 User I/O Port

* Device: MC68230 Parallel Interface/Timer (PI/T)

* Accessible via the 8-bit local I/O bus. Table 1.1 shows the

register layout of PI/T2.

* User I/O port is available on P2 of VMEbus, shown in Table
1.2.

- The Address Map

* The address map of this CPU board is listed in Table 1.3.

* A24: D32, D24, D16, D8 area: SRAM-6, ISCSI-1

• SYS68K/SRAM-6

- Address Modifier Selection

* Standard Supervisor/Non-privileged Data Access

* Address Modifier Code: 3D, 39

* Jumperfield B4:4 to 15, 2 to 17

- VMEbus Interface

* A24: D32, D16, D8

* Standard Address Mode (A24)



• Address: SXX000000-- $XX2000000 (2 Mbyte)

• Jumperfield B3:18 to 15, 20 - 30 to 13 - 3

, SYS68K/ISCSI-1

- Address Modii_er Selection

• Standard Non-priviledged/Supervisory program and data Ac-

cess.

• Address Modifier Code: 3A, 39, 3E, 3D

, Jumperfield B22:5 to 2, 6 to 1

- VMEbus Interface

• A24: D16, D8

• Address: SXXA00000 -- SXXA1FFFF (128 Kbyte)

• Jumperfield B21:2 to 17, 4 - 7 to 15 - 12

Table 1.1 PI/T2 Register Layout

ADDRESS

FFg00E00

FFgOOE01

FFg00E02

FFg00E06

FF800E08

FFg00EOA

FF800EOD

REGISTER

PIT2 PGCR

PIT2 PSRR

PIT2 PADDR

PIT2 PACR

PIT2 PADR

PIT2 PAAR

PIT2 PSR

DESCRIPTION

Port General Control Register

Port Service Request Register

Port A Data Direction Register

Port A Control Register

Port A Data Register

Port A Alternate Register

Port Status Register

7

m
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Table 1.2 PI/T2 User I/O Interface Signals

PIN No. PORT No. IN/OUT P2/J2 No. SIGNAL

4

5

6

7

8

9

I0

11

13

14

15

16

PA0

PAl

PA2

PA3

PA4

PA5

PA6

PA7

H1

H2

H3

H4

OUT

OUT

OUT

OUT

IN

IN

A29

C29

A30

C30

A31

C31

A32

C32

A27

C27

A28

C28

READY _

LW/B*

SLCT0*

SLCTI*

ENB0*

ENBI*

Table 1.3 The Address Map

m

w
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START (HEX) END (HEX) SPACE DI_SCRIPTION --

OO000000

00400000

FAO00000

FBO00000

FBFFO000

FCO00000

FCFFO000

FDO00000

OO3FFFFF

FgFFFFFF

FAFFFFFF

FBFEFFFF

FBFFFFFF

FCFEFFFF

FCFFFFFF

FFFFFFFF

1.0MB

3.9 GB

16.0 MB

15.9 MB

64.0 KB

15.9 MB

64.0 KB

Shared Memory

A32: D32, D24, D16, D8

Message Broadcast Area

A24: D32, D24, D16, D8

AI6: D32, D24, DI6, D8

A24: DI6, D8

AI6: DI6, D8

System Area

= =

m

H
H

t OS-9 and 0S-9/68000 are trademarks of Microware Systems Corporation.
2VMEPROM is a PDOS based real time monitor.
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2. Data Acquisition Module

When the fault is injected from the fault injection module, the data ac-

quisition module is activated and activity data on 8 or 32 observation poiv,'s

are synchronously sampled with the clock of the target system and writ ton
into the SRAM memory module.

2.1 Hardware Overview

Basically, the data acquisition module generates the address signals from

the clock of the target system and transfers the sampled data to the memory
module via the VMEbus.

A block diagram is shown in Fig.2.1. This board consists of the following
functional blocks:

* Clock Control (CKCTRL)

• Address Generator (ADDGEN)

• Address Modifier Selector (AMS)

• Address Bus Buffers (ABUF)

• Data Transfer Control (DTCTRL)

• Input Channel Selectors (INSLCT)

• Data Bus Buffers (DBUF)

• Bus Master Control (BUSMST)
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2.2 Clock Control

• Recording Clock Selector

- J1-1, IC1-1

- Selectable by bit 1 and 2 of J1.

* Clock of CPU Under Test: bit 1: ON, bit 2: OFF

, 16MHz VME System Clock: bit 1: OFF, bit 2: ON

• Clock Frequency Divider

- J1-2, IC2

- Selectable by bit 3 - ? of J1 as shown in Table 2.1.

• Qualifier Trigger

- IC1-2, IC3-1, IC10-1

- Trigger: Fault injection signal transferred from FIM.

- The trigger is enabled when ENB1 is high.

• Clear Control

- R1, IC1-3, IC16-1

- Generate Clear Signal for the Clock Control, Address Generator,

and Data Transfer Control.

- Reset Signals: System Reset, Bus Error, and End Address.

• End Address Selection

- J2-1

- End address: SXXOFFFFF- SXX7FFFFF

- Selectable by bit 1 - 4 of 32-1 as shown in Table 2.2.
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Table 2.1 Frequency Division Settings

Division bit3 bit4 bit5 bit6 bit 7

1

2

4

8

16

ON OFF OFF OFF OFF

OFF ON OFF OFF OFF

OFF OFF ON OFF OFF

OFF OFF OFF ON ' OFF

OFF OFF OFF OFF ON

u

w

l E

D

Table 2.2 End Address Selection

End Address bit 1 bit2 bit3 bit4

SXXOFFFFF

SXXIFFFFF

SXX3FFFFF

SXX7FFFFF

ON OFF OFF OFF-

OFF ON OFF OFF

OFF OFF ON OFF

OFF OFF OFF ON
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m
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2.3 Address Generator

* Address Signal Generator

- IC4, IC5, IC6, IC7, IC8, IC9

- Implement 24-bit synchronous binary counter using a carry-look-
ahead circuit.

- Maximum clock frequency is calculated as follows:

fM,IX = 1/(CLKtoRCOtPL n + ENTtsu)

- Address Space

* Up to 8 Mbyte Address Space. Refer to Table 2.3.

* Start address: $XXOOOO00 (fixed)

* End address: SXXOFFFFF - SXXTFFFFF (selectable)

* Counter Status Output

- IC10-2

- When counters are enabled to count, ENBI* is asserted.

Table 2.3 Address Space and End Address

Address Space End Address

1 Mbyte

2 Mbyte

4 Mbyte

8 Mbyte

$XXOFFFFF

SXXIFFFFF

$XX3FFFFF

SXXTFFFFF

i

2
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2.4 Address Bus Buffers and Address Modifier Selector

• Address Bus Buffers

- IC12, IC13, I014

- Three transparent D-latches (74AS573) interface local address sig-
nals with the VMEbus address bus.

- DHBA* places the 24-bit outputs in either a normal logic state or

a hlgh-impedance state.

• Address Modifier Selector

- J2-2, RN, ICll

- 6-bit Codes: Used for an additional decoding parallel to the ad-

dress signals.

- Address Mode: Supports the standard address mode (A24) for

supervisor or nonpriviledged memory access.

• 3E: Standard Supervisor Program Access

• 3D: Standard Supervisor Data Access

• 3A: Standard Non-Pfiviledged Program Access

• 39: Standard Non-Priviledged Data Access

- Selectable by bit 5 - 10 of 32 as shown in Table 2.4.

HEX

3E

3D

3A

39

Table 2.4 Address Modifier Codes and Settings

Binary

111110

111101

111010

111001

bit5 bit6 bit7 bit 8 bit 9 bit 10

OFF OFF OFF OFF OFF ON

OFF OFF OFF OFF ON OFF

OFF OFF OFF ON OFF ON

OFF OFF OFF ON ON OFF
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2.5 Data Transfer Control

* Data Transfer Bus Control

- ENB1, DWB*

* IC10-3, IC15-1

* When READY* asserted,both ENB1 and DWB* are latched
to be active.

* LCLR* resets the outputs.

- LAS*

. R2, IC10-4, IC15-2, IC17-1, -2

. When READY* asserted,LAS* isset to bc active.

* During data transfers,LAS* isassertedby LCLK and resetby
LDTACK*.

- LA01, LDS0-1*, LLWORD*

* IC16-2, -3,-4,IC18-I, -2,IC30-I, -2,-3,IC33-1

* When LW/B* ishigh (long word mode), I.DS0*,LDSI*, LA01,

and LLWORD* are set to low during data transfers.

* When LW/B* is low (byte mode), LLWORD* is set to high
and other signalsrespond as follows:

LDS0* = QA00, LDSI* =-QA00, LA01 = QA01

* Data Bus Buffer Control

- IC17-3,-4, IC18-4,-5

- Long Word Mode (LW/B* is high)

* During D HBD* is active, ENBL* is asserted and ENBB* is
de-asserted.

- Byte Mode (LW/B* is low)

* During DHBD* is active, ENBB* is asserted and ENBL* is
de-asserted.
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• Bus Release Control

- IC31-1

- Support Release On Request (ROR) operation.

* Bus request signals (BR0-3*) will assert BREL to release

BBSY* at the end of the current data transfer.
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2.6 Input Channel Selector and Data Bus Buffers

• Input Channel Selector

m

m

w

IC10-5, -6, IC19, IC20, IC21, IC22

hnplement 32-to-8 data selectors using four 4-bit data selectors.

Data selection is controlhd by the two select inputs (SCLT0-1*)
as shown in Table 2.5.

• Data Bus Buffers

- Long Word Mode

• IC23, IC24, IC25, IC26

• Four transparent D-latches (74AS573) interface 32-bit input

data with the 32-bit VME data bus (000-31).

• When LAS* is taken low, the outputs are latched to retain

the data that was set up. Refer to Table 2.6.

• ENBL* places the 32-bit outputs in either a normal logic state

or a hlgh-impedance state.

- Byte Mode

• IC27, IC32

• Two transparent D-latches (74AS573) interface 8-bit local

data bus (LD0-7) with the 16-bit VME data bus (D00-15).

• When LAS* is taken low, the outputs are latched to retain

the data that was set up. Refer to Table 2.6.

• ENBS* places the 16-bit outputs in either a normM logic state

or a high-impedance state.

w
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Table 2.5 Input Channel Selection

i

SLCT0* SLCTI* LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

high

high

low

low

high
low

high
low

28 24 20 16 12 08 04 00

29 25 21 17 13 09 05 01

30 26 22 18 14 10 06 02

31 27 23 19 15 11 07 03

i

Table 2.6 (a) Active Portions of Data Bus

DSI* DS0* A01

low low low low

high low high high

low high high high

high low low high

low high low high

LWORD* D24-31 D16-23 D08-15 D00-07

byte 0 byte i byte 2

byte 2

byte 0

byte 3

byte 3

byte 1

i

L_
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Table 2.6 (b) Data Organization in Memory

Operand Byte Address

byte 0

byte 1

byte 2

byte 3

Sxxx .... XX00

SXXX .... XX01

Sxxx .... XXi0

Sxxx .... XXll
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2.7 VMEbus Master Control

s Master Bus Controller

- IC28, IC29

- VME 12201 provides two device chip set for non-slot 1 master bus

controller.

- Initiating a Bus Request

• Drive BRO* low after receiving DWB* and I.A5* asserted.

- Arbitration

• After receiving BGOIN* from daisy chained VMEbus grants,

local arbiter arbitrates between DWB* and BGOIN.

• If DWB* wins the arbitration (i.e. DWB* occurs before

BGOIN*), BBSY* will be asserted.

• If BGOIN* wins, local arbiter will drive BGOOUT*, which

passes the bus grant down the daisy chain to adjacent

master in the system.

- Data Transfer

• Local master does not access the bus until the previous mas-

ter has relinquished control of bus, which occurs when AS*,

DTACK* and BERR* are de-asserted.

• Support Address Pipelining using DHBA* and DHBD*.

Broadcast the address of the next bus cycle while the data

transfer of the current cycle is occuring, i.e. DTACK* and

DSn* are still low.

DHBA* is enabled as soon as AS* is disabled.

• When DTACK* goes high, signifying the end of the current

data cycle, DHBD* enables the data buffers for the next

data cycle.

• WRITE* is latched during address pipeUning to hold its level.

- Bus Release

• Supports Release On Request (ROR) protocol via BREL.

Release the data transfer bus whenever another ,nodule

requires it.
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External bus request will assert BREL to release BBSY*

at the end of the current data transfer. Refer to section

2.5.

If no bus requests are pending, the BREL will be kept
de-asserted and the local master maintains BBSY* low to

perform continuous VMEbus data transfer cycles.
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tPLX Technology,625 Clyde Av¢.,Mountain View,CA 94043

E



o Interface Signals
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3.1 VMEbus Interface
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This section provides information on VMEbus interface. Table 3.1 and

Table 3.2 list P1/J1 and P2/J2 pin assignments respectively. The P1 connec-

tor includes all the signals required for the 68000. The P2 connector provides

expansion of both address and data buses to 32 bits and also provides 96 pins

for user I/O lines.

The data transfer bus is very similar to the 68000's native buses except

the following signals. Long word (LWORD*) is asserted for 32-bit data trans-

fers. The 6-bit address modifier (AM0 - AMS) allows the type of access to

be specified. The bus error signal (SERR*) is typically used to indicate a

memory error.

The interrupt bus has seven interrupt request lines (IRQi*), an interrupt

acknowledge (lACK*), and a daisy-chained priority signal (IACKIN*, lACK-

OUT*). Each of seven lines corresponds to an interrupt priority level.

The arbitration bus provides four levels of arbitration. For each level,

there is a bus request signal (BRi*) and a bus grant daisy chain (BGilN*,

BGiOUT*). The utility bus consists of SYSCLK, SYSRESET*, SYSFAIL*,

ACFAII*, and power supplies.
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Table 3.1 VMEbus P1/J1 Pin Assignments

PIN No. P1/J1 ROW A P1/J1 ROW B P1/J1 ROW C

D081

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

D00

D01

D02

D03

D04

D05

D06

D07

GND

SYSCLK

• GND

DSI*

DS0*

WRITE*

GND

DTACK*

GND

AS*

GND

IACK*

IACKIN*

IACKOUT*

AM4

A07

A06

A05

A04

A03

A02

A01

-12VDC

+SVDC

BBSY*

BCLR*

ACFAIL*

BGOIN*

BGOOUT*

BGIIN*

BG1OUT*

BG2IN*

BG2OUT*

BG3IN*

BG3OUT*

BR0*

BRI*

BR2*

BR3*

AM0

AM1

AM2

AM3

GND

SERCLK

SERDAT*

GND

IRQT*

IRQ6*

IRQS*

IRQ4*

IRQ3*

IRQ2*

IRQI*

+5VSTDBY

÷5VDC

D09

DI0

DII

DI2

DI3

DI4

DI5

A21"

A20

AI9

AI8

AI7

AI6

AI5

AI4

A13

A12

All

A10

A09

A08

+12VDC

÷5VDC

GND

SYSFAIL*

BERR*

SYSRESET*

LWORD*

AM5

A23

A22
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Table 3.2 VMEbus P2/J2 Pin Assignments

PIN No. P2/J2 ROW A P2/J2 ROW B P2/J2 ROW C

9

10

Ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

READY*

SLCT0*

ENB0*

+SVDC

GND

RESERVED

A24

A25

A26

A27

A28

A29

A30

A31

GND

+5VDC

D16

D17

D18

DI9

D20

D21

D22

D23

GND

D24

D25

D26

D27

D28

D29

D30

D31

GND

+SVDC

LW/B*

SLCTI*

ENBI*
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3.2 Input Channels

The input channels consit of data channels (DATA00-31), clock (CLK),

and trigger signal (TRIG*). Table 3.3 shows the pin assignments of tile input
channels.

Table 3.3 Input Channel Pin Assignments

PIN DAM Signal ECB Signal

(a)
(¢)
1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

DATA04

DATA05

DATA06

DATA07

DATA08

DATA09

DATA10

D ATA 11

DATA12

DATA13

DATA00

DATA31

DATA30

DATA28

DATA27

DATA26

" DATA25

DATA24

DATA22

DATA23

DATA 21

PIN

(b) GND

(d) GND

D04 2 DATA03

D05 4 DATA02

D06 6 CLK

D07 8 DATA14

D08 10 DATA 15

D09 12 TRIG*

D10 14 DATA01

Dll 16

D12 18

D13 20

D00 22

A15 24 DATA16

A 14 26 DATA29

A12 28

All 30

A10 32

A09 34 DATA17

A08 36 DATA18

A06 38 DATA19

A07 40 DATA20

A05 42

8M-CLK 44

1M-CLK 46

DAM Signal ECB Signal

GND

GND

D03

D02

4M-CLK

DI4

DI5

FIEN*'

D01

E

AS*

UDS*

LDS*

R/W*
A13

FC2

FC1

FC0

A01

A02

A03

A04

DTACK*

6800IRQ*
VMA*

1FIEN*: Fault Injection Enable, a signal transferred from the fault injection module.
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Appendix A Schematic Diagrams

A.1 Clock Control

A.2 Address Generator

A.3 Address Bus Buffers and Address Modifier Selector

A.4 Data Transfer Control

A.5 Input Channel Selector and Data Bus Buffers

A.6 VMEbus Master Control
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IC28

BREL

SYSRESET*

BGIN*

LAS* _ T
DWB* _ ,,

LDSO-I* 13>

DTACK*

BERR* (_

BGIN

AS*

VME1220A

BBSY*

DHBA*

DWB*

LAS*

R/W*

VME1220B

C_ BR*

C_ BGOUT*

C_) BBSY*

t3:> DHBA*

--x!
\

AS*

l::> LDTACK*

E:::> LBERR*

WRITE*

E::> DHBD*

(_ DSO-I*

IC29

6
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Appendix B Parts List

w

aim

LABEL

ICI

IC2

IC3

IC4

IC5

IC6

IC7

IC8

IC9

ICI0

ICII

ICI2

ICI3

IC14

IC15

IC16

IC17

IC18

IC19

Table B.1 DAM Parts List (1)

Part Number Pins DESCRIPTION

74LS132 14

74LSI61A 16

74AS74 14

74LS161A 16

74LS161A 16

74LSI61A 16

74LS161A 16

74LS161A 16

74LS161A 16

Quadruple Schmitt NAND gates
Synchronous 4-bit counter

Dual D-type F/Fs

Synchronous 4-bit counter

74LS04 14

74AS573 20

74AS573 20

74AS573 20

74AS573 20

74AS74 14

74AS02 14

74AS00 14

74AS04 14

74LS153 16

Hex inverters

Octal D-type transparent latches

Dual D-type F/Fs

Quadruple 2-input NOR gates

Quadruple 2-input NAND gates

Hex inverters

Dual d-to-1 data selectors



u
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"-_BEL

IC21

IC22

IC23

IC24

IC25

IC26

IC27

IC28

IC29

IC30

IC31

IC32

IC33

Table B.2 DAM Parts List. (2)

Part Number Pins DESCRIPTION

74LS153 16 Dual 4-to-1 data selectors

74LS153 16

74LS153 16

74AS573 20

74AS573 20

74AS573 20

74AS573 20

74AS573 20

VMEI220A 24

VMEI220B 24

74AS02

74LS20

74AS573

74AS00

Octal D-type transparent latches

VMEbus master controller

(Non-slot 1, P-45)

14 Quadruple 2-input NOR gates

14 Dual 4-input NAND gates

20 Octal D-type transparent latches

14 Quadruple 2-input blAND gates
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Appendix C DAM Board Layout

C.1 Component Side Layout

C.2 Wiring Side Layout
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• • • N N • L, D i Y •

--June 1990

VME 1210/1220

Slot I and Non-Slot 1 VMEbus Master Controllers

_-Dlstlnctive Features

• VME 1210 provides two device chl,_ set for slot 1
= master bus controller and single level arbiter

_ VME 1220 provides two device chip set for non-slot 1
master bus controller

• Integrates 48ma and 64ma VMEbus slg-
.. nals:AS*,DS0*,DSI*,WRITE*,BR*,B BSY-

• Integrates Input hysteresis buffers

_ Supports Release When Done (RWD) and Release On
_. Request (ROR) protocols

• Supports address plpelinlng, block transfers, and
_ : early BBSY" release

,_ Available In Commercial, industrial and Military tem-
perature ranges

--Programmable Version Avallablp-

l lf the VME 121011220 does not match the requirements '

; of the design, a programmable version is available (the
PLX 464) which allows the user to customize all inputs,
outputs and logic. Programming is performed using
industry standard tools such as ABEL=,' and CUPL ="
software and commonly available PLD programming
hardware. Contact PLX for a data sheet on the PLX 464
and other PLX products.

==
i

Vcc
BREL _

: LAS= r-
SYSRESET.

DV|aC

m AS=C _BGINd

NC P"
NC

m VSS

m

VHE 1210A

Applications

VMEbus masters residing in slot 1 boards (VME 1210)
VMEbus masters residing in non-slot 1 boards (VME 1220)

General Description

The VME 1210: The VME 1210 is comprised of the VME
1210A and the VME 1210B for slot 1 applications. The
devices are CMOS ar_ packaged in 24 pin 300 milwide DIPs
or 28 pin J-type LCCs. The VME 1210A provides bus
requesting, local arbitration, and single level system arbi-
tration. The VME 1210B functions as the VMEbus controller.
The requester initiates a VMEbus request from the local
master's bus request for a data or interrupt cycle. The bus
controller controls the bus after initiation of a bus cycle and
relinquishes the bus at the end of the bus cycle. The bus
controller supervises the handshaking between the local
master CPU and the slave modules.

The VME 1220: The VME 1220 is comprised o! the VME
1220A and the VME 1220B for non-slot 1 applications. The
devices are CMOS and packaged in 24 pin 300 milwide DIPs
or 28 pin J-type LCCs The VME 1220A provides bus
requesting and local arbitration. The VME 1220B functions
as the VMEbus controller. The requester initiatesa VMEbus
request from the local master's bus request for a data or
interrupt cycle. The bus controller controls the bus after
initiation of a bus cycle and relinquishes the bus at the end
of the bus cycle. The bus controller supervises the hand-
shaking between the local master CPU and the slave
modules.

VME ;E

,-s Vcc
_AS=
_1 LgTACK=

"! vss
"_ VRITE-
:=I Vss

"! Connect to pa_ 1]
"] LIERR=

"J Co,_ect to Vss
9 D$0.

lOB

i

=_

i

= =

atent Pendlrig
BEL is a Iradernark of Data VO Corp.

CUPL is a trademark of Logical Devices, Inc.

I'_J_ _ ice

n _ LDTACK=

$ Ill VSS

m _1 VS£

. r;"_ Co.nect _o D_ 11
• i"_ LIERR=
• =_i=I ]}$1•
u _ ::::1CON_CI 20 Vss
m _: ::=1 ]}$0=

VME 1220B

Figure 1. Pinout of VME 1210/1220 (DIPs)

PLX Technology, Inc.
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VME121011220

in Description

VME 1220A

Pin # Pin #
LCC DIP

3 2

4 3

5 4

Si_)nal ,,,
BREL

LAS°

SYSRESET'

6 5 DWB"

7 6 AS °

9 7

10 8

11 9

12 10

13 11

14,21, 12,18,
24 20

16

17

18
i

19

2O

13

14

15

16

17

1923

NC

NC

BGIN

Vss

NC

DHBA"

25 21 BGOUT"

26 22 BBSY °

27 23 BR °

2,28 1,24 Vcc

1,8, NC
15,22

O

I

O

O

O

O

0

UO

0

Function

Active high; Bus release signal indicating BBSY" can be
released.

Active low; Address strobe from local master.
m

Active low; VMEbus System Reset.

Active low; Device wants bus, local master requests con-
trol of bus.

Active low; VMEbus Address Strobe.

Connect to pin 17 (DIP) or pin 20 (LCC).

Connect to pin 16 (DIP) or pin 19 (LCC).

No Connect.

No Connect.
• ,,, ,,,,

high; Inverted VMF__busBus Grant InActive signal,
BGIN'.

Chip Ground.

Connect to Pin 14 (DIP) or Pin 17 (LCC).

Connect to Pin 13 (DIP) or Pin 16 (LCC).

No Connect.

Connect to pin 8 (DIP) or pin 10 (LCC).

Connect to pin 7 (DIP) or pin 9 (LCC).

Active low; Device has bus address, address buffer
enable.

Active low; VMEbus Bus Grant Out signal.

Active low, 48 mA open collector; VMEbus Bus Busy
signa!:
Active low, 48 rnA open collector; VMEbus Bus Request
signal.

+5 V Chip Power

No Connect.

u

r_==_

m_

c--4
_fEwkN_ FASE Bt.ANK NOT FILMED



- Pin Description

=-- VME 1210B and VME1220B

Pin #
LCC

3

4 3

5 4

6 5

7 6

9 7

10 8

Pin #
DIP

I IBll

2
Signal

DWB*

VME 1210/1220

11 9 R/W*

12 10 BBSY*

13 11

14,21, 12,18, Vss
24 20

16 13 DS0*

17 14

18 15 DSI*

19 16 LBERR*

20 17

23 19 WRITE*

25 21 DHBD °

26 22 LDTACK*

27 23 AS °

2,28 1,24 Vcc

1,8, NC
15,22

BERR* I

DHBA* I

LAS* I

LDS0* I Active low; Lower data strobe from local master.
i i

LDSI* I Active low; Upper data strobe from local master.

DTACK ° I Active low; VlVlEbus Data Transfer Acknowledge, data is
valid during a read cycle or data has been accepted from
the bus dud.nga write _cle.

Active low; VMEbus Error signal.

Active low; Device has bus address, address buffer
enable.

Active low; Address strobe lrom local master.
ii i i

Active higMow; Read or write cycle from local master.
i

I Active low; VMEbus Busy, local master controls bus.

Connect to pin 17 (DIP) or pin 20 (LCC).

Chip Ground. "

O Active low; 64ma VMEbus lower Data Strobe signal, ind]-
cates valid data on bus.

Connect to Vss.

Active low; 64rna VMEbus upper Data Stro'be signal,
indicates valid data on bus.

Active low; Open collector signal, bus error to local mas-
ter.

Connect to pin 11 (DIP) or pin 13 (LCC).

Active low; 48ma VMEbus Write signal, indicates bus
read or write cycle.

Active low; Device has bus data, data buffer enable.
n.

Active low; Open collector signal, data acknowledge to
local master.

Active low; 64mA VMEbus Address Strobe signal, indi-
cates valid address on bus.

+5 V Chip Power

No Connect.

I

O

O

O

O

O

O

O

W

w

++

lime

Function

Active low; Device wants bus, local master wants control
of VM Ebus.
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VME 1210/1220

VME 1210/1220 Taming Waveforms

D_B_

BR_

BBSY_

BGIN

BREL

DHBA_

DHBD_

LAS_

AS_

LDSn_

DSn_

Dn

Dn

DTACK_

LDTACK_

R/W_---_

WRITE_

]3G[]UT_

t9

t:11

t19

t15

DWB_

Figure5.]3ruingDiagram

No DWB_

6 -Y
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ME'1210/1220

lmlng Specihcatlon._
w

Timing

Parameters

" tl

12

o t3
m

w

r_-

ii

z_
i

ilml

i,,

14

Signals

'DWE" to BR" asserted

LI.C"to6R* asserted

Max. "_i,me(ns) unless
otherwise specified

BR" to BG asserted

90

45

System arbiter t_me

BGIN to BBSY" asserted 125

M-6£"

13"

Description

' _f DW_' is asserted abe, LAS*

130 If LAS ° is asserted after DWB °

0 VME 1210 only when inlemal BR" genera_o¢
(_G oonnected to BGIN}

65 J VM,E 121C only when external BR" received
(BG oonnected to BGIN)

System arbit¢ 13me VME 1220 only

185 VME 1210 only inc:udes delay li'_e: 55ns Ior
M-65, 45ns for M-5L 35ns for'C-45.40ns for
C-35, 60ns for C-25 part

lg5 VME 122_ only

65

65

135

15 BBSY" to BR ° negated 45

16 BBSY* to DHBA ° asserted 45

BBSY" to BGIN negatedt7 45 max

35 rain

System arbiter I_me

65

r.5 min

VME 1210 only

System arbiter time VME 1220 only

IS DHBA" to DHBD* asserted 45 65

19 DHBA" to WRITE" asserted 45 65 CondilJo_al upon FVW" value

tlO DHBA" to AS* asserted 130

tll AS* to DSn" asserted

9O
70 (rain)

45 65

Ensures 35ns minimum address to AS" and
data to DSn" set up times

BGIN to BBSY" negatedt12

BREL to BBSY" negated

[)TACK" to LDTACK ° asserted

80 max 120 max VME 1210 only:

70 rain 110 rain VME 1210 only; t7min + tl 2rain Z 90 ns rain
BBSY" assertion "

135 max 195 max VME 1220 only

105 min 165 min VME 1220 only (see note below)

65t13 45

t14 45 65

LDTACK" to LAS*/LDSn" negated @ Local master115 @ Local master

Valid only when BREL is asserted after
BGIN is negated

Local master's time to negate strobes

tlF, I.AS* to DHBA ° negated 45 65 If DWB" already negated

t17 DWB" to DHBA" negated 45 65 It LAS* already negated

t18 LAS ° to AS* negated 50

LDSn" to DSn ° negatedt_,9 50

120 LDSn" to D,Sn" negated 50
45

123

DSn" to WRITE ° negated

125

72

72

72

65 Ensures 10ns hold time

65

130

45DSn*/DTACK ° to LDTACK °
negated

BGIN to BGOUT' asserted 9O

Eadiest negation of DSn ° or DTACK" causes
LDTACIC to be negated.

VME 1220 only

25+d 35+d 45+d 55+d 65+d VME 1210 only

124 BGIN to B3OUT" negated 45 65

Latest of LAS*/DWB; to AS" 135 195 Asse_on timewhen already have bus
asserted (BBSY" asserted',

45Latest of DHBD'/LDS" to DS*
asserted

65 Assertion lime when already have bus
(BBSY" asserted)

-_N0tI_Y" _ guaranteed to be asserted for a minimum of 90 ns in the VME 1210A devices anct the C45 device of the VME 1220A, even if BGIN is negated
immeoiately after BBSY" is asserted. For the C-35 and C-25 VME 1223A devices, the sum of _e system arbiter "BBSY" asserted to BGIN ° negated"

¢= time and the t12 minimum time on the VME 1220A must be greater tha'_g0 ns. Generally, this dine wil! be taken up compt.:ety by the system arbiter
_me, h.o_vever, if not, a delay line can be connected between pins 8 and 16 (DIP) or pins 10 and lg (:.CC} on the VME 122:,,, device to guaraniee the
_r,j ns m,numum. For exan'_ole, if the system arbiter "BBSY" assertec to BGIN" negated" lime was 35ns (min), no delay line would be needed for the
C-35 VME 122OA device, since 35 + 75 > 90. However, a 10 ns delay line would be required for the C-25 VME 1220A.
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APPENDIX B

FAULT INJECTION MODULE

SCHEMATIC DIAGRAMS

Ver. 1.0
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Ref No. Part Number

ICl

IC2

It3

IC4-1

IC5

IC6

It7

ItS

IC9-1

IC10-1

ICll

R1

IC12

ICl3

ICl4-1

IC14-2

IC14-3

IC14-4

IC14-S

ICl5-1

ICl6-1

IC17

IC18-1

R2

DLi

SN74ALS520

SN74ALS520

SN74ALSI38

SN74ALS32

VME 2000

Fault Injection Module

Parts List (1)

Size Description ....

20 8-bit Identity Comparator

20 8-bit Identity Comparator

16 3 to 8 Decoder

14 Quad 2-Input OR Gates (I/4)

241 Slave Module Interface Device

SN74F374 20

SN74LS645-1 20

MC68230 P8 48

SN74ALSO4B 14

SN74LS244 20

SN74ALS161B 16

82

SN74ALS520

SN74ALS520

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALSO4B

SN74ALS02

SN74ALSOI

SN74ALSI53

SN74ALS74A

RWTO50P

Octal D-Type Flip-Flops

Octal Bus Transceivers

Parallel Interface/Timer (PIT-O)

Hex Inverters (I/6)

Octal Buffers (1/2)

4-bit Binary Counter

R Network, seven 4.7kN (I/7)

20 8-bit identity Comparator

20 8-bit Identity Comparator

14 Hex Inverters (1/6)

14 Hex Inverters (2/6)

14 Hex Inverters (3/6)

14 Hex Inverters (4/6)

14 Hex Inverters (5/6)

14 Quad 2-Input NOR Gates (1/4)

14 Quad 2-Input RAND Gates (1/4)

16 Dual 1 of 4 Data Selectors

14 Dual D-Type Flip-Flops (1/2)

8 R Network, seven 4.7k_ (2/7)

14 50ns Delay Line

m

m

m

I

W

H
H

U

w

t3OOmil 24 pin DIP

_Single-in-line package
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Ref No.

IC9-2

IC9-3

IC15-2

IC16-2

ICl9

It20

IC21

IC22

R3

R4

R5

IC23

IC24

IC25

IC26

IC2?

IC28

I029

IC30

IC31

IC32

IC33

IC34

IC35

IC36

IC37

IC38

Part Number

SN74ALSO4B

SN74ALSO4B

SN74ALS02

SN74ALSOI

SN74ALSI53

SN74ALSIS3

SN74ALSI53

SN74ALSI53

HC68230 P8

SN74LS449

SN74LS449

SN74LS449

HC68230 P8

SN74LS449

SN74LS449

SN74LS449

MC68230 P8

SN74LS449

SN74LS449

SN74LS449

NC68230 P8

SN74LS449

SN74LS449

SN74LS449

Fault Injection Module

Parts List (2)

Size Description

14

14

14

14

16

16

16

16

8

8

8

Hex Inverters (2/6)

Hex Inverters (3/6)

Quad 2-Input NOR Gates (2/4)

Quad 2-Input NAND Gates (2/4)

Dual I of 4 Data Selectors

Dual 1 of 4 Data Selectors

Dual I of 4 Data Selectors

Dual I of 4 Data Selectors

R Network, seven 4.7kn (3/7)

R Network, seven 4.Tkn (4/7)

R Network, seven 4.7kn (5/7)

48

16

16

16

48

16

16

16

Parallel Interface/Timer (PIT-I)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Parallel Interface/Timer (PIT-2)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

48

16

16

16

48

16

16

16

Parallel Interface/Timer (PIT-S)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Parallel Interface/Timer (PIT-4)

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

Bus Transceviers w/ Bit dir.

= .

m

W
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Additional Components for the New Experimental System

!

m

Part No.

MZ 7500

Macli488

PFG5105

PFG5105

TM5006

FIM

Mac II

SPARC

Manufacturer

MIZAR

MIZAR

IOtech

Tektronix

Tektronix

Tektronix

JHU

Apple

Sun Micro.

• Descrip tion
GPIB Interface Board for

VMEbus

Single Cable for MZ 7500

GPIB Controller Board for

Mac II

Pulse Generator (demo)

Pulse Generator (new)

Prog. Mainframe (demo)

48ch Fault Injector

Macintosh II

SPARCstation work station

Cost (S)
69.5.0(

75.00
I

535.00

2,471.25

2,800.75

851.25

m
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SPARC

I I

I !

,'scsi ;
I !

•" I/F I-
!

! !

•- ......... 2

SCSI

I/F

(Up to 811B)

I

I

I

SRAM 1(2118) ....

1

VMEb u s SYSTEM

(0S-9/68000)

]FDC/

I SCSI

FDD

(3.5")

1

POWER

(+SV, t12V)

I

CPU l(11C68030)

RS-232 GPIB

I

GP-IB II/F

TEG

GP-IB

I/F

Macll

FIM

I

DAM

I
!

PULSE

PULSE

GEN

RS-232

LOCAL BUS

CUT

(11C68000)

I

VMEbus

VTI00

RS-232

w

i

FAULT INJECTION EXPERIMENTAL CONFIGURATION
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Targeted Features of the Fault Injection Module

rl
m

• Fault Injector

- Provides 48 channels with hit-definable outputs using four PI/T

(MC68230) and twelve bus transceiver (74LS446) chips.

- Supports three output states (0, 1, and Z 1) on each channel.

- 2ch pulse generator is installed as a source of fault injections.

- Supports single/multiple faults of stuck-at-0/1 types with dura-

tion varying from 40 ns to 99.9 ms.

• Word Recognizer

- Provides a versatile trigger source for the fault injection and data

acquisition.

- Implements 16-bit word recognizer using a MC68230 PI/T and

two 74LS686 magnitude comparators.

1Z: High-impedance
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Certification Trails and Software Design for Testability
Gregory F. Sullivan I Dwight" S. Wilson 2 Gerald M. Masson s _0_ / _

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
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Baltimore, MD 21218 Baltimore, MD 21218 Baltimore, MD 21218

Abstract

! This paper investigates design techniques which may

be applied to make program testing easier. We present
, methods for modifying a program to generate addi-

tional data which we refer to as a certification trail.

This additional data is designed to allow the program

output to be checked more quickly and effectively. Cer-
tification trails [14, 16] have heretofore been described

primarily from a theoretical perspective• In this paper,

we report on a comprehensive attempt to assess experi-
mentally the performance and overall value of the certi-

fication trail method. The method has been applied to
nine fundamental, well-known algorithms for the fol-

lowing problems: convex hull, sorting, huffman tree,

shortest path, closest pair, line segment intersection,
longest increasing subsequence, skyline, and voronoi di-

agram. Run-time performance data for each of these

problems is given, and selected problems are described

in more detail. Our results indicate that there are many

cases in which certification trails allow for significantly
. faster overall program execution time than a 2-version

programming approach, and also give further evidence
of the breadth of applicability of this method.

lq_eywords: Software design for testability, software

fault detection, certification trails, error monitoring,
design diversity, data structures.

more quickly and effectively. Our previous work on cer-

tification trails emphasized a theoretical perspective in

which we proved that the asymptotic time complexity

of the testing process could be reduced [14, 16]. In
this paper, we report on implementations of the cer-

tification trail method so as to assess experimentally
with run-time data the performance and overall value

of the technique. We have implemented the certifica-

tion trail method for nine fundamental and well-known

algorithms of broad importance and applicability. For

each algorithm, we have produced three implementa-

tions: a version which produces the output; a version
which produces the output and generates a certifica-

tion trail; and a version which checks the output while

utilizing the certification trail. Specifically, algorithms

for the following problems are analyzed: huffman tree,

shortest path, sorting, closest pair, line segment in-

tersection, convex hull, longest increasing subsequence,

skyline, and voronoi diagram• The scope of the algo-

rithms considered gives credibility to the overall appli-

cability of the certification trail method. Furthermore,
comparisons of run-time data for each of the three ver-

sions of each of the algorithms considered reveal many
cases in which an approach using certification trails al-

lows for significantly faster overall program execution

time than a 2-version programming approach.

1 Introduction 2 Introduction to Certification Trails

We have examined a wide variety of fundamental

algorithms to determine how they can be redesigned

to allow for easier testability. To make the problem

of testing the correctness of the output of a program

more tractable we have found it is desirable to modify
the program so that it generates additional data which

we refer to as a certification trail. This additional data

is designed to allow the program output to be checked

] Research partially supported by NSF Grants CCR-8910569

and CCR-8908092 azad an IBM Teclmoiogy hiterchange Program
Grnalt.

2Research partially supported by NSF Grant CCR-8910569

nald aaa IBM Tedmology l.nterchaalge Program Grant.

Research partially supported by NASA Grant NSG 1442 and

an IBM Teclmology Interchange Progr,,,n Grant.

First, let us consider a basic method which is used

to perform testing to detect software faults called N-

version programming [1, 2]. This method utilizes N

teams of programmers, each independently implement-

ing separate programs based on a problem specifica-

tion. The programs are executed on the same input and
the outputs are compared. Errors caused by software

faults are detected whenever the independently writ-

ten programs do not generate coincident errors. Thus

the technique exploits design diversity• Also, note that
the method can detect hardware faults which affect the

separate executions in distinct ways causing distinct

outputs. It is particularly valuable for detecting errors
caused by transient fault phenomena. The N-version

programming method can be used to detect faults af-
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_l_gure 1: Timeline Comparison of the Certification

with2-VersionProgramm g
_f "t'-"

-'t,rs system has been put into production or it can he

: used to detect faults in a testing phase prior to produc-
: lion. If two teams are used then we refer to the method

u 2-version programming.

The certification-trail technique is designed to pro-
vide similar capabilities for detecting software and

hardware faults as 2-version programming but expend
"fewer resources. As mentioned above the central idea

]J to modify the first algorithm so that, with modest

='luiditional overhead, it leaves behind a trail of data

_ which we call a certification trail. This data is chosen

_--=$othat it can allow the second algorithm to execute

;-=more quickly and/or have a simpler structure than the
ftrlt algorithm. As above, the outputs of the two exe-

-¢utions are compared and are considered correct only
_if they agree. An illustration of typical execution times

=-of 2-version programming versus the certification trail

_method is given in Figure 1. We assume that the two

_mplementations developed for 2-version programming

---_ave approximately equal execution times. Note, how-
ever, that we must be careful in defining this method

_Dr else its error detection capability might be reduced

E_y the introduction of data dependency between the

two program executions. For example, suppose the first

_rogram execution contains an error which causes an in-

---orrect output and an incorrect trail of data to be gen-

=ttrated. Further suppose that no error occurs during the

execution of the second program. It still appears pos-
__hle that the execution of the second program might

the incorrect trail to generate an incorrect output
which matches the incorrect output given by the execu-

j'0n of the first program. Intuitively, the second execu-

_n would be "fooled" by the data left behind by the
'if'st execution. The definitions we give below exclude

this po6sibility. They demand that the second exeeu-

r_n either generate a correct answer or signal that an
_or has been detected.

3 Formal Definition of a Certification
Trail

In this section we will give a formal definition of a

certification trail and discuss some aspects of its real-
izations and uses.

Definition 3.1 A problem p is formalized as a rela-

tion, i.e., a set of ordered pairs. Let D be the domain

(that is, the set of inputs) of the relation P and let S

be the range (that is, the set of possible solutions). We

say an algorithm A solves a problem P iff for all d E D
when d is input to A then an s E S is output such that
(d, s) E P.

Definition 3.2 Let P : D --. S be a problem. A solu-

tion to this problem using a certification Iraiiconsists of

two functions Fl and F_ with the following domains and

ranges Ft : D ---, S × T and Fa : D × T --_ S U {error}.
T is the set of certification trails. The functions must
satisfy the following two properties:

(1) for all d E D there exists s E S and t E T such that

FI (d) = (s, t) and F_(d, t) = s and (d, s) E P
(2) for all d E D and all t E T either

(r_(d, t) = s and (d, s) E P) or F2(d, t) -- error.

We also require that FI and F2 be implemented so

that they map elements which are not in their respec-

tive domains to the error symbol. Intuitively, the first
condition states that if both parts of our solution exe-

cute correctly, then their answers agree and are correct.

The second condition states that a correct secondary

execution will never produce an incorrect output, i.e.,
one that is not a solution to the problem.

The definitions above assure that the testing capabil-
ity of the certification-trail approach is similar to that

obtained with a 2-version programming approach dis-

cussed earlier. That is, if a software or hardware fault

occurs during only one of the executions then either the
fault will be detected or the output will be a correct so-

lution to the problem. The examples in this paper will

indicate that this new approach can save overall execu-
tion time.

4 Certification Trail Examples

In the remainder of this paper we evaluate the use
of certification trails for nine classic problems in com-

puter science. We have implemented algorithms for
these problems together with other algorithms which

generate and use certification trails. In addition, we

i;

i"

O_INAL PAQE I_
OF POOR QUALITY

Paper 7.3
201



J

discuss a general technique for construction of certifi-

cation trails for algorithms using a wide range of data

structures. This technique is used to implement the

certification trails for several of our examples.

We provide a full description of the algorithm for the

convex hull problem which generates a certification trail

and a full description of the algorithm which uses that
trail. Because of space considerations the discussion

of the other algorithms is abbreviated. In some cases

references to previous publications or technical reports

which describe the algorithms more fully are given.

The algorithms we have chosen to implement are

not always the algorithms which have the smallest

asymptotic time complexity. Often the asymptoti-

cally fastest algorithms have large constants of pro-
portionality which make them slower on the data sizes

we examined. We modified and used some programs

from major software distributions such as quicker-sort

from a Berkeley Unix distribution. Fortune's algo-
rithm for computing the Voronoi diagram was obtained

from an Internet site at AT&T Bell Labs. Other algo-
rithms were based on textbook discussions. It should

be stressed here that this research is continuing as
we further increase our corpus of algorithm and data-
structure implementations.

4.1 Explanation of timing data

We have collected timing data for the algorithms on
a Sun SPARCstation ELC with 16MB of RAM. The

system was run as a standalone machine in single user

mode during the timing experiments. Timing data was

obtained through the getrusage 0 system call. The user
times are reported in the data.

Much of the data presented in the timing table is
essentially self-explanatory relative to the certification

trail technique and algorithms considered. However, a

brief discussion of the table entries is appropriate.

The column labelled Basic contains timing data

which gives the execution time of the algorithm in pro-
ducing the output without the generation of the certi-
fication trail. All timing data is listed in seconds.

The Primary Execution (Prim. Ezec.) column gives

the execution time of the algorithm in producing the

output with the additional overhead of generating the
certification trail.

The Secondar_ Execution (See. Ezec.} column gives

the execution time of the algorithm in producing the
output while using the certification trail.

The Percent Savings (_ Say.) column records

the percentage of the execution time savings which is
gained by using the certification trail method as com-

pared to 2-version programming approach. This as-
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sumes that both versions take approximately the same
amount of time to execute.

The Speedup column is the ratio of the run times of

the Basic Algorithm and the Secondary Execution.

For the Huffman tree data, the input size for the

Fluffman tree program is the number of nodes. Each

node is given a frequency, chosen uniformly from the

integers {1, 2, ..., n}. n was also selected to be the
number of nodes.

For the shortest path table, there are two numbers

associated with the input size, the first is the number of

vertices in the graph, the second the number of edges.

A graph with the required edges is selected uniformly
from the set of all such graphs, then tested for connect-

edness in order to assure that paths exist to all vertices.

For the geometric algorithms, the input size is the

number of points (or lines) in the original data set.
Point set input was generated by choosing points with

integer coordinates uniformly over a large square (typ-

ically 1,000,000 by 1,000,000 or larger square). For the

Line Segment Intersection problem, lines were gener-
ated by picking a line segment start point uniformly

from a large square and picking offsets for z and 9"

coordinates from a smaller range to give the end point
of the line segment. This was done to bound the line

length and avoid data sets resulting in a quadratic num-
ber of intersections.

Data for the longest increasing subsequence problem

was produced by generating a random permutation of
[I..N] for input size N.

Sorting was performed on an array of pointers to
structures. It was assumed that each structure con-

tains an extra integer field for use in generating the
certification trail. Sorting was performed on integer
keys, though the technique can be used with a more

complex key (in fact, using complex keys is very likely
to increase the speedup achieved). Integers were chosen

uniformly from interval [1.. 1,000,000,000].

4.2 Convex Hull Example

The convex hull problem is fundamental in the field

of computational geometry. Our certification trail so-

lution is based on a convex hull algorithm due to Gra-
ham [6] called Graham's Scan. For basic definitions in

computational geometry see the text of Preparata and
Shamos[11]. For simplicity in the discussion which fol-

lows we will assume the points are in general position,
e.g., no three points are collinear. It is not hard to
remove this restriction.

Definition 4.1 The convex hull of a set of points, T,
in the Euclidean plane is defined as the smallest convex

polygon enclosing all the points. This polygon is unique



its verticesareasubsetof thepointsin T. It is

tl_cified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex

hull incrementally in a counterclockwise fashion. The

first step of the algorithm selects an "extreme" point

mad calls it pl. The next two steps sort the remaining

points. The order of the points is determined by the

dopes of the line segments formed by joining each point

_Pt. It is not hard to show that after these three steps
the points when taken in order, PI,P2,...,pn, form a

simple polygon; although this polygon may not be con-
_t. The Graham Scan algorithm traverses this poly-

gon, removing points until the resulting polygon is con-
_.x. The main FOR loop iteration adds vertices to the

lmlygon under construction and the inner WHILE loop
le.moves vertices from the construction. A point is re-

moved when the angle test performed at line 6 reveals

diat the angle at that vertex is obtuse. It is easy to

demonstrate that when a point is removed, it must fall

within the triangle defined by three other points, Pl and

the two points that were adjacent to the point removed.
When the main FOR loop is complete the convex hull

his been constructed. The execution of this algorithm

'ated in Figure 2. For each removed point,

associated triangle is indicated in bold lines, and in
text below the diagram. Our certification trail relies

t _1 the fact that that these triangles can be determined

quickly.

, Algorithm CONVEXHULL(T)

Imput: Set of points, T, in R 2

O_tput: Counterclockwise sequence of points in
R 2 which define the convex hull of T

l: Let Pl be the point with the largest

z coordinate (and smallest y to break ties)

| For each point p (except p:) calculate

the slope of the line through pl and p

,. Sort the points (except pl) from smallest

alope to largest. Call them p2,-.-, p-

ql := Pl; q2 := P2; q3 := 10"3;m = 3
FORk=4tonDO

WHILE the angle formed by

" qm- 1, q,,_, P_ is > 180 degrees

i i- DOm:=m-IEND
- m:=m+l

qm :-- Pk
END FOR

l0 FOR. i = 1 to m DO, OUTPUT(qi)

END FOR
I;ND CONVEXHULL

First execution: In this execution the code CON-

V_XHULL is used. The certification trial is generated

92
9 / •

ip7 /" P7

i ps......,p4 p4
pl _':'"......... r- pl ,I

pS pS pC

pl pl

Figure 2: Convex hull example.

Point not on Three surrounding points

convex hull

103 P l, P2, P4
P5 Pl, P4, P6

Pr pl ,ps ,P8

by adding an output statement within the WHILE loop.

Specifically, if an angle of less than 180 degrees is found
in the WHILE loop test then the four tuple consisting

of qm,q,,-],Pl,Pk is output to the certification trail.
The final convex hull points ql,. •., qm are also output

to the certification trail. Strictly speaking the trail out-

put does not consist of the actual points in R 2. Instead,

it consists of indices to the original input data. This

means if the original data consists of ps, p2, •. -, P,, then
rather than output the element in R 2 corresponding to

Pi the number i is output.
Second execution: Let the certification trail con-

sist of a set of four tuples, (zl, al, bl, cl), (_:2, a2, b2, c_),

• .., (z,, a_, b,, c,) followed by the supposed convex hull,

ql, q2,. -., qm. The code for CONVEXHULL is not used
in this execution. Indeed, the algorithm is dramatically

different than CONVEXHULL.

It consists of five checks on the trail data.

• First, it checks that there is a one to one correspon-

dence between the input points and the points in

u {ql,...,q,,}.

• Second, it checks that for each i E {1,...,r}, ai,

bi, and ei are among the input points.

• Third, the algorithm checks that for each i E

{1,...,r}, zi lies within the triangle defined by
ai,bi, and ci.
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• Fourth, the algorithm checks that for each triple

of counterclockwise consecutive points on the sup-

posed convex hull, the angle formed by the points

is less than or equal to 180 degrees.

• Fifth, it checks that there is a unique point among

the points on the supposed convex hull which is a

local maxima. We say a point q on the hull is a local

maxima if its predecessor in the counterclockwise

ordering has a strictly smaller y coordinate and its

successor in the ordering has a smaller or equal y
coordinate.

If any of these checks fail then execution halts and

"error" is output. Otherwise the convex hull read from

the trail is output. As mentioned above, the trail data

actually consists of indices into the input data. This
does not unduly complicate the checks above; instead

it makes them easier. The correctness and adequacy of
these checks must be proven. A complete formal proof

is beyond the scope of this paper, instead a brief outline

of the proof will be given.

Using our formal definition of certification trails, let

D be the set of all finite planar point sets T. Let S
be the set of convex polygons, with vertices in coun-

terclockwise order (the restriction to counterclockwise

ordering makes the convex hull unique). Then the

problem we are considering is HULL : D ---, S where
HULL(T) is the polygon in S that forms the convex
hull of T.

The description of the algorithms above defines func-
tions/:'1 and F2. We must show that both conditions of

Definition 3.2 hold. The following two lemmas, which

we state without proof, are required.

Lemma4.2 Let P be a polygon on n points

pl,p2,...,p,. P is a convez polygon iff P is simple

and each angle pipjpk is less than or equal to 180 de-

grees, where i is in 1,2,...n, j = (i + 1)rood n, and
k = (i+ 2) mod n.

Lemma 4.3 If P is a non-simple polygon, then either

P has more than one local mazima, or the interior angle
at some vertex is greater than 180 degrees.

These are deceptively simple statements. Though

they are intuitively obvious, a formal proof is difficult.

It is interesting to note that some computer graphics

texts give an incorrect test for determing convexity of

a polygon by omitting the check for simplicity required
by Lemma 4.2.

Recall that the first condition is:

For all d E D there exists s E S and t E T such that

F_(d) = (s,t) and F2(d,t) = s and (d,s) _ P.
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Intuitively, this means that if both executions per-
form correctly then they will both output the convex

hull of the input, which is unique. Note that genera-

tion of the certification trail does not affect the output
of the Graham Scan algorithm. Thus the condition

on Fl(d) is satisfied by the correctness of the Graham

Scan algorithm, the proof of which is well known [1 I].
To show that F_(d, t) = s, note that a copy of s is con-

tained on the trail t. Our description of F2(d, t) states
that s is output unless one of the five checks above

fails. It is trivial to verify that the first three of these

checks must be satisfied. The fourth check cannot fail,

since the polygon described by s is convex (because
(d, s) E P). Similarly, if the fifth check fails, then the

polygon described by s has two local maxima, and this

is not possible for a convex polygon.

The second condition is:

For all d E D all t E T either (F2(d,t) = s and

(d, s) E P) or F_(d, t) = error.

Intuitively, this means that given an input and arbi-

trary trail, F2(d, t) produces a solution to the problem
or flags an error.

Our definition of F2(d, t) states that the polygon Q
stored on the trail is output unless one of the five checks
fails. We must therefore demonstrate that if all five

checks succeed, then Q is the convex hull of the input

points d. Let H be the convex hull of the points d,

The first condition guarantees that every point in d

is classified as a hull point or an interior point. The

second condition guarantees that the triangles used to

identify interior points are formed from input points,

and the third check verifies that the interior points are

indeed inside their respective triangles. Note that we

do not attempt to verify that the triangles used are the

ones that would be produced by Ft(d). In general, for

a given interior point, there may be several triangles of

input points in which it is contained. Together, the first
three conditions imply that all points in H are also in Q,

since it is impossible for a hull point to be contained in

a triangle. Note that these three checks do not exclude

the possibility that interior points are present in Q, nor

do they guarantee that the ordering of the hull points in

Q is correct. The final two checks will accomplish this.
If the last two checks are satisfied, Lemma 4.3 states

that Q is simple, and therefore it must be convex by
Lemma 4.2.

Thus, Q is a convex polygon whose vertex set is a

superset of the vertices of H, i.e., H is contained in

T. This implies that no other point from the input

set may be a vertex of Q, since any input point that
is not a hull point is interior to H and therefore inte-

rior to Q. Finally, it is clear that the ordering of the

vertices of Q and H must be the same (although there



--might appear to be two possible orderings, clockwise
azd counterclockwise, a clockwise ordering will fail the

fourth check). Therefore if all five checks succeed, then
_the output of F2(d, t) will be the convex hull of d.

This demonstrates that the algorithms described

meet the conditions of Definition 3.2, and are therefore

a certification trail solution to the convex hull problem.

-- Time complexity: In the first execution the sort-

ing of the input points takes O(n log(n)) time where n is
;he number of input points. One can show that this cost

--dominates and the overall complexity is O(n log(n)).
It is possible to implement the second execution so

_ .hat all five checks are done in O(n) time. The first two

:hecks may be done in linear time since the certification

trail contains indices into the input data. The third

_ _ad fourth checks require a constant time calculation at

-_Zach point. Finally, the uniqueness of the local maxima
"_ clearly checkable in linear time.

Order-of-Magnltude Testing Speedup: It
= hould be noted that for the convex hull problem, we

-,_e seeing an order of magnitude speedup for reason-
able sized problems. We believe this offers a dramatic

emonstration of the efficiency of our proposed software

__ting technique using certification trails in compari-
son with the 2-version programming technique.

_ _lz.e Uasic

F
$000 O.64

10000 1.38

--2GO00 3.89

50000 8.44

"00000 17.36

Prim. Exec.

(ALso Gen.

Tradl)
0.67

1.40

3.84

8.50

17.88

0.08 41.41

0.17 43.12

0.48 44.73

0.85 44.61

1.6,5 44.33

Table 1: Convex Hull

Speedup

8.00

8.12

8.48

9.93 --

I0.5_

g-_ Sorting Example

i_This important problem has a massive literature. In
t_s section we will discuss how to apply the certifi-

cation trail approach to the sorting problem. Let us

a_ume that the sorting algorithm takes as input an ar-
r_ of n elements and outputs an array of n elements.

The algorithm is supposed to place the data in non-
d'_reasing order.

:fro design a certification trail algorithm we must dis-
co_er the nature of the data that should be included

in the certification trail to allow quick computation
o_he final output sorted array. Suppose that we de-

eL... to use the output array itself as the certification

trail. We note that it is easy to check that this array is

:n on-decreasing order by simply performing a single
all

pass over the array. Unfortunately, it is considerably
more difficult to make sure that this array contains ex-

actly the same elements as the original input array. In-

deed, this problem has a lower bound time complexity
of f_(n log(n)) in a comparison based model.

Because of this difficulty we use the permutation of

the elements defined by the input and output data ar-

rays as the certification trail. This permutation is com-

puted by attaching an Item Number field to the data

elements before sorting. The i-th item receives item

number i. After the elements are sorted, the permu-

tation from input to output is obtained by reading the
Item Numbers from the elements in their new order.

The second execution reads the permutation from

the trail and verifies that it is a permutation on n el-

ements, i.e., that no numbers are repeated or omitted.

This permutation is used to rearrange the input ele-

ments in linear time. Finally the algorithm checks that

these elements are now in non-decreasing order.

Size

10000

50000

100000

S00000

10ooooo

Basic I Prim. Exec.

I ] (Also Gen.

I T,_a)
°.2S__.__.L__j.30

1.80 J 1.90

-23.95-_-_ 24.69

Exec. [ Say.

0.04 _ ]39:29

Table 2: Sort

7.00_

9.47

9.66

11.19

11.47_

4.4 Certification Trails For Abstract Data
Types

Before we present the rest of our example algorithms

we discuss a general technique applicable to many al-
gorithms and data structures.

An abstract data type is a data object or set of data

objects together with a group of operations for manip-

ulating the object(s). Each operation takes a (possibly
empty) set of arguments, and some, but not necessarily
all, operations return answers. Many algorithms make
extensive use of abstract data types.

We describe a method for automatically generating
a certification trail for an algorithm which uses an ab-

stract data type. This is done by modifying the ab-

stract data type operations, so that during the first
execution they generate a certification trail, and dur-

ing the second execution they use the certification trail.

Otherwise, these operations are identical to the original
abstract data type operations, i.e., they take the same

type of arguments and have the same return types. The

object of creating and using the certification trail is to

w
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allow a more efficient implementation of the abstract

data type during the second execution.

We illustrate this technique for the following ab-

stract data type which we call Ordered Collection. An

Ordered Collection will contain a set of pairs (i,z)

where i is an item number, and z is a real number value.

(This selection is made for simplicity of description, the

elements being stored could be more complex). No two

elements of the set may have the same item number,

though several items may have a common value. We

define a total ordering on pairs by (i, z) < (i',z') iff
x < z' or z = x' and i < i'

The following operations are defined on an Ordered
Collection:

INSERT(/,z) Add the element (i, z) to the set.

DELETE(i) Delete the element with item number i
from the set.

PREDECESSOR(i) Let (i, x) be the element in the

set with item number i. This operation returns

its predecessor, that is, the largest pair less than

(i,z). A special value SMALLEST is returned if

(i, z) is the smallest element in the set.

MIN Return the smallest element in set.

NEAREST(z) Return the element from the set with
value closest to x. If there is a tie, return the
element with the smallest item number.

This small set of operations is being chosen for con-

creteness, several additional operations could be easily

defined. If an error occurs during any of these opera-

tions, for example, inserting pairs with duplicate item

numbers or attempting to delete a non-existent item,

then the program terminates indicating an error.

These operations may be modified to produce a cer-

tification trail during the first execution by modifying
the INSERT(i,z) and NEAREST(z) operations to do

the following (in addition to their normal function):

INSERT(i,x) After adding this element to the set,

perform a PREDECESSOR(i) operation and write
the item number of the answer to the certification
trail.

NEAREST(z) Write the item number of the answer
to the certification trail.

A typical implementation of an abstract data

type supporting the above operations would require
f_(n log(n)) time to process a sequence of n operations.

By using the certification trail, we can achieve linear

time for n operations during the second execution. This

Paper 7.3
206

includes the time necessary to check the trail for cor-
rectness as well as use it.

The implementation of the Ordered CoUection for
the second execution will be a structure called an in-

dexed linked list. This is a doubly linked list, along

with an array Items of pointers, indexed by item num-
ber. The i-th element in this array points to the list

node for the element with item number i (or is NULL if

no element in the list has item number i). This allows

us to find an element in constant time given its item
number. The elements themselves are maintained in

ascending order (according to the pair ordering given

above) on a doubly linked list, i.e., each element has

pointers to its successor and predecessor. In addition

to the array, we maintain a variable Start, which stores
the item number of the first element in the list.

The abstract data type operations for the second
execution are defined as follows:

INSERT(/,z) Read the item number p from the trail.

p is the item number that would be the predecessor

of (i,z) if it were in the set. Items[p] points to

the list node for the element with index p, call

this element (p, zp). We can insert (i, x) after this
node using ordinary list operations. Before doing

so, however, we make three checks:

i. Check that Items[i] is currently NULL, i.e.,
there is not currently an element with item
number i in the set.

ii. Check that (i, x) is greater than (p, zp).

iii. Check that (i, z) is less than the successor of

(p,

If these checks are satisfied, then (i, z) may be in-

serted after (p,z_). Set Items[i] pointing to the
list node for (i, t).

Note that special cases occur at the beginning and
end of the list. We omit the specifics of these cases,

mentioning only that Start must be updated for
insertions at the front of the list.

DELETE(i) Check that Items[i] is not NULL, i.e.,

there is an element with item number i currently
in the set. If so, remove it from the linked list,

and set Items[i] to NULL. If we remove the first

element of the list we must also update Start.

PREDECESSOR(i) Items[t] points to the element

with item number i, and its predecessor may be

found by following the appropriate pointer.

MIN The variable Start indicates the item number of

the first element on the list, i.e., the minimum el-

ement. Items[Start] therefore points to this ele-
ment.



NEAREST(x) Read the index i from the trail.

Items[i] points to the element having this item
number, call it (i, v). To verify that this is the cor-
rect answer we will have to check one of its neigh-

_ : bors. If v < r, then only the successor of (i,z)

L could have a value closer to v. Otherwise, only the
predecessor is a candidate. Check the appropriate
neighbor.

L-::_

Although our example uses elements that contain
item numbers, it is not necessary that the abstract data

_.ypebe defined in this way. The insert operation of an
_bstract data type may be modified to tag elements

with item numbers as they are inserted.

:: Variations on this scheme are possible. For exam-

)le, by modifying DELETE(i) and NEAREST(z) op-
rations so that they also write the item numbers of

_ ,_redecessors to the trail, it is possible to use a singly
_inked list during the second execution. More sophis-
•,-_icated schemes, involving marking list nodes for dele-

tion and delayed checks, allow the use of singly linked
z: ists without requiring DELETE(i) and NEAREST(z)

produce predecessor information.
The technique in this example generalizes to other

,tbstract data types supporting a predecessor operation.
---'n fact, a somewhat weaker condition often suffices; it
_s sufficient that the specific implementation of the ab-

stract data type allow the predecessor of an element
_0 be found at the time the element is inserted. The

_bstract data type itself need not support a predeces-
sor operation. This technique is used in four of our
_xample algorithms.

__ Using this technique, it is possible to reuse the first
"_xecution code, except for the code implementing the

_bstract data type operations. One advantage of this
s that it may be possible to add extra checking to such

"_ode, such as bounds checking and checks on pointer
references, that may be too expensive to include in the
irst execution. Of course, the two programs may be

_.leveloped separately as long as the specifications agree
on the use of the abstract data type.

- : Space does not permit a full proof of correctness of
-=-his scheme. A proof proceeds by establishing the foi-l
--lowing invariants on the indexed linked list used in the

second execution.

_._ i. The pairs in the linked list are in order from small-
est to largest.

-_ ii. Each element of the Items array is either NULL or
w points to one of the nodes in the linked list.

:y-)ii. If Items[t] is not NULL, then the list node pointed
to by it stores an element with item number i.

(Note that this implies that each list node is
pointed to at most once).

iv. Every node in the list is pointed to by some item

in Items[i].

v. Start is the item of the first element in the list.

These conditions are clearly satisfied by an indexed
linked list containing no elements (i.e., before any oper-
ations have been performed). Inspection of operations
that query the list (MIN and NEAREST for example)
shows that they function correctly if the above condi-
tions are met. It is easy to prove correctness of the
certification trail by demonstrating that the operations
maintain a one to one corresponce between the pairs
in the linked list and the elements in the abstract data

type and that the above invariants are preserved.

4.5 Shortest Path Example

This is another classic problem which has been ex-
amined extensively in the literature. Our approach is
applied to a variant of the Dijkstra algorithm [3] as
explicated in [17]. We are concerned with the single
source problem, i.e., given a graph and a vertex s, find
the shortest path from s to v for every vertex v.

The algorithm for this problem which has the fastest
asymptotic time complexity uses fusion trees and is
given in [5]. This algorithm however appears to have
a large constant of proportionality and therefore we do
not use it.

We use the techniques just discussed to implement
the certification trail for this problem. A full descrip-
tion may be found in a technical report [15].

Size Buic Prim. Exec. Sec. _ Speedup
(Also Gen. Exec. Say.

Trail)
100,1000 0.04 0.05 002 1250 2.00
250,2500 0.15 0.16 0.06 26.67 2.50

500,5000 0.31 0.33 0.11 2903 2.82
1000,10000 0.70 076 0.'_3 2929 304
2000,20000 1.58 167 0.45 3291 3.51
2500,25000 2.06 2.15 ..... 0.55 34.47 3.7'5

Table3: ShortestPath

4.6 Huffman Tree Example

This is another classic algorithmic problem and one
of the original solutions was found by ltuffman[7]. It
has been used extensively to perform data compression
through the design and use of so called Huffman codes.
These codes are prefix codes which are based on the

==
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Huffman tree and which yield excellent data compres-

sion ratios. The tree structure and the code design are

based on the frequencies of individual characters in the

data to be compressed. Here we are concerned exclu-

sively with the Huffman tree. See [7] for information

about the coding application.

Definition 4.4 The Huffman tree problem is the fol-

lowing: Given a sequence of frequencies (positive inte-

gers) f[l], f[2],..., f[n], construct a tree with ,1 leaves

and with one frequency value assigned to each leaf so

that the weighted path length is minimized. Specif-

ically, the tree should minimize the following sum:

_I, eLEAF len(i)f[i] where LEAF is the set of leaves,

len(i) is the length of the path from the root of the tree

to the leaf li, f[i] is the frequency assigned to the leaf

li.

A full description of the method we employ to gener-

ate and use a certification trail is detailed in a technical

report [15].

Size Basic Prim. Exec. See. % Speedup

(Also Gen. Exec. Say.

Wr_)
5000 0.81 0.87 0.16 36.42 5.06
I0000 1.76 1.86 0.33 37.78 5.33

25000 6.01 6.30 1.02 39.10 5.89

50000 10.62 11.14 1.70 39.55 6.25

Table 4: Huffman tree

4.7 Other problems

We report timing data for five other problems, the

"Manhattan skyline" problem, computation of Voronoi

diagrams, longest increasing subsequence, the closest

pair problem, and line segment intersection. Space per-

mits only a brief description of these problems, rather

than a full exposition of the certification trail tech-

niques used.

The "Manhattan skyline" problem is: Given a set

of rectangles with collinear bottom edges, compute the

polygonal outline of the union of the rectangles [9].

The Voronoi diagram is a fundamental concept in

computational geometry [11]. Given a set of points P

in the plane, the Voronoi diagram is a partition of the

plane into regions such that each region consists of all

points closer to a given p E P than to any other other

point in P. Computation of the Voronoi diagram is

an important step in many problems involving point

location.

The next problem we consider is, given a sequence

of integers, find the longest (not necessarily unique)

strictly increasing subsequence.

Size

lOOO
5ooo

100oo
150OO
2OOO0

Basic

0.27
1.69
3.91

6.08

8.83

Prim. Exec.

(Also Gem

Trail)
0.26
1.65

3.72

5.78

8.27

See.

Exec.

%

S_tv.

0.12 29.63

0.57 34.32

1.14 37.85

1.77 37.91

2.33 37.87

Speedup

2.25

2.96

3.43

3.44
3.6d

Table 5: Skyline

Size

100

500

lOOO
5OOO
100oo

5OOOO

Basic

0.04

0.24
0.51

2.75

5.79

40.15

Prim. Exec. Sec. %

(Also Gem Exec. Say.

Trail)
0.04 0.03 12.50

0.26 0.19 6.25

0.51 0.39 I1.76

2.82 2.03 11.82
5.89 4.06 14.08

40.63 22.00 22.00

Speedup

I.,33

1.26

1.31

1.35

1.43

1.83

Table 6: Voronoi Diagram

Size

IOOOO

50ooo

100000
50OOOO

1O00O0O

Basic

0.13

0.78

1.61
9.17

18.66

Prim. Exec.

(Also Gen.
Trail)
0.14

0.81

1.70
9.32
19.58

Sec. % Speedup
Exec. Say.

0.04 30.77 3.25
0.22 33.97 3.55

0.44 33.54 3.66

2.22 37.08 4.13

4.46 35.58 4.18

Table 7: Longest Increasing Subsequence

Given a set of points P in the

Pair problem is that of finding the

minimum distance over all pairs in

plane, the Closest

pair of points with

the set.

Size Basic Prim. Exec. Sec.

(Also Gen. Exec.

10000 0.26 0.27 0.07
50000 1.45 1.55 0.36

100000 3.06 3.26 0.72
500000 16.84 18.02 3.62

% Speedup
Say.

34.62 3.71
34.14 4.03
34_97 4.25

35.75 4.65

Table 8: Closest Pair

Given a set of line segments in the plane, the line

intersection problem is the problem of determining all

intersections of line segments in this set.

For the first four problems, algorithms running in

O(n log(n)) time were implemented for the first execu-

tion. The second execution, using certification trails,

runs in linear time. The first execution algorithm used

for line intersection runs in (O((k + n) Iog(n)) time

where k is the number of intersections and n the num-

ber of points. The second execution runs in O(k + 11)

time. Note that k may be quadratic in n.

w
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= f -Basic Prim. Exe¢.

(Aho Gem
Tr_l)

I 0.47 0.49
n-_1.45 1.53

_=_ i 3.33 3.47

I' - 7.72 7.88

:Z -24.00 24.12

Sec.

Exit.

0.04
0.12
0.26
0.60
1.75

%
Say.

43.62
43.10
43.99
45.08
46.10

Speedup

11.75
12.08
12.81
12.87
13.71

Table 9: Line Segment Intersection

5 Concluding Discussion

Certification trails have heretofore been discussed

principally from a theoretical perspective. In this pa-
--per we have presented experimental timing data which

illustrates the advantages of the certification trail tech-

nique for software testing over the 2-version program-
ming technique. We have further presented techniques

--and analytical results for several new algorithms which
further support the significance of the certification trail
technique by demonstrating its broadening applicabil-

:-.ity. It should be appreciated that the scope of our

experimental investigation is not limited to the algo-
,ithms considered here; numerous other algorithms we
lave considered could have been discussed, and we con-

=_inue to work on new applications. It should also be

,',ointed out that in addition to the timing experiments
eported here, software fault injection experiments have

--_bo been conducted which verify the detection capabil-
ities of the certification trail method. The breadth of
pplicability of the certification trail technique contin-

._es to expand along with the credibility of its advan-
tages. Increasingly, the certification trail method can

ke viewed as a competitive software testing alternative.

U
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Abstract

Certification trails are a recently introduced sad

promising approach to fault-detection and fault-

tolerance [11, 12]. Recent experimental work [13]
reveals many cases in which a certification-trsll aW

prosch al]ows for significantly faster program execu-

tion time than a basic time-redundancy approach..ALI-

gorithms for answer-valldation of abstract data types

ate presented in [12] sad al]ow a certification trail np-

proach to be used for a wide variety of problems. In

this paper, we report on an attempt to assess the per-

formance of algorithms utilising certification trails on

abstract data types. Specifically we have applied this
method to the following problems: heapsort, Huff.man

tree, shortest path, and skyline. Previous results used

certification trails specific to a particular problem and

implementation. The approach in this paper al]ows
certification trails to be localized to "data structure

modules," making the use of this technique transpar-
ent to the user of such modules.

Keywords= Software fault tolerance, certification

trails, error monitoring, design diversity, data strut-
tures.

1 Introduction

To explain the essence of the certification trsl] tech-

nique for software fault tolerance, we first discuss 2-

vei's/on programming [4, 2]. Using 2-version (or more

generally, N-version) programming, two (or N) im-

plementations of an algorithm are executed on a given

input, sad the results compared. If the outputs agree,

they ate accepted, otherwise an error is flagged. This
technique will detect a variety of software faults as well
as transient hardware faults. A variation of this tech-

nique is to execute a single program twice and compare

t Research partially supported by NSF Grants CCR-8910569

and IBM Technology Interchange Program Grant.

=]R.e_m,'c.h pm'tisl]y supported by NSF Grants CCR-8910569
and CCR-8908093.

_Hesea._.h partially supported by NASA Grant NSG 1442.

results, this is called time redundancy. Although there

ate a few software faults that may be detected using

time redundancy (e.g., unlnitial_ed pointer errors), it

more effective in catching transient faults.

The certification tral] technique is designed to

achieve simi]ar types of error detection capabilities but

expend fewer resources. The central idea, is to modify

the first algorithm so that it leaves behind a trni] of

data which we call a certij_cafion ira//. The second

algorithm may then malEe use of this data, which is

chosen so that the algorithm executes more quickly

and/or has a simpler structure than the first algo-
rithm. As above, the outputs of the two executions

are compared and are considered correct only if they

agree. Note, however, we must be careful in defining
this method or else its error detection capability might

be reduced by the introduction of data dependency

between the two algorithm executions. For example,

suppose the first algorithm execution contuins a er-

ror which causes an incorrect output and nn incorrect

certification tral] of data to be generated. Further sup-

pose that no error occurs during the execution of the

second algorithm. It appears possible that the execu-

tion of the second algorithm might use the incorrect

trail to generate an incorrect output which matches

the incorrect output given by the execution of the first
algorithm. Intuitively, the second execution would be

_fooled" by the data left behind by the first execution.

The definitions we give below exclude this possibility.

They demand that the second execution either gener-

ates a correct answer or signals the fact that an eFror
has been detected in the data trail.

Early work on the certification trail focused on cre-

sting trails for specific implementation of problems.
For example the trail given in [11] for the convex hull

problem is specific to the Graham scan algorithm. In

general, the two algorithms used in this approach cs_

be quite different. A more recent approach is to con-
struct s certification trni] for an abstract data type.

That is, given the answers to operations al]owed on
that type, our algorithm checks the correctness of

these answers. This method has the advantage that

the certification trail techniques are localised to the

0730-3157/92$3.00 © 1992 IEEE
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outines implementing data structure operations, and

nay then be applied to a wide variety of problems
_without specinl coding. In many cases it may be poe-

sible to use existing code with only minor modifica-

ions. Code using these routines is run twice, the first

_.ime generating the trail, the second time using it. A]-
ternately, the trail checking may be done, in pared]el,

".e., we perform the checking as the trail is being gen-

:rated. A programmer using a library of these routines
--need not be familiar with certification trail techniques.

Object oriented programming techniques may be par-

.icularly useful for implementation of such "certified"

"-data types.

--2 Formal Definition of a Certification

Trail

In this section we will give a formal definition of a

certification trail and discuss some aspects of its real-

"sations and uses.

"-Definition 2.1 A problem P is formalised as a rela-

tion, i.e., a set of ordered pairs. Let D be the domain

Ithat iJ, the set of inputs) of the relation P and let
_S be the range (that is, the set of solutious) for the

problem. We say an algorithm A solves a problem P
L _fffor'dldEDwhendisinputtoAthenu•_Sis

_utput such that (d, •) E P.

Definition 2.2 Let P : D --* S be a problem. A

solution to this problem using a certification trail con-
_-sists of two functions FI and F3 with the following do-

mains and ranges Fx : D -. S × T and F2 : D × T -,

S U {error}. T is the set of certification graib. The

,.functions must satisfy the following two properties:

(1) for all d E D there exists , E S and there
exists f E T such that

-- Fx(d) = (•,t) and F2(d,t) =, and (d,•) _ P

(2) for all d E D and for all t E T
either (F2(d, t) = • and (d, •) E P)

__ 2 or F2(d, _) = error.

We also require that Ft and F2 be implemented

-'so that they map elements which are not in their re-

spective domains to the error symbol. The definitions
- above assure that the error detection capability of the

-__certification trail approach is comparable to that ob-

tsined with the simple time redundancy approach

cussed earlier. (That is, if transient hardware faults

occur during only one of the executions then either an

error will be detected or the output will be correct.)

It should be further noted, however, the examples to

be considered will indicate that this new approach can

also save overall execution time.

$ Answer Validation Problem for Ab-

stract Data Types

Our general apprcach to applying certification
tralh uses the concept of an abstract data type. Some

examples of abstract data types are given later in thi_

paper. Here we mention some important common

properties and give a short illustration. Each abstract

data type has a well defined data object or set of data

objects. Each abstract data type has a carefully de-
fined finite collection of operations that can be per-

formed on its data object(s). Each operation takes a

finite number of arguments (possibly sezo). In addi-

tion, some but not all operations return answers. An

example of an abstract data type is a priority queue.

The data object for a priority queue is an ordered pair

of the form (i,k) where i is an item number and k is

a key value. A priority queue has two operation: in-

sert(i,k) and deimln. The insert operation has two
arguments: item number i and key value k. The in-

sert operation does not return an answer. The delmin

operation has no arguments, but it does return an an-
swer. The precise semuties of these operations are

given later in this paper.
For each abstract data type we may define an an-

,wee validation problem. Intuitively, the answer vali-

dation problem consists of checking the correctness of

a sequence of supposed answers to a sequence of op-

erations performed on the abstract data type. More

formally, the input to the answer validation problem

is a sequence of operations on the abstract data type

together with the arguments of each operation. In
addition, the sequence contains the supposed answers
for each of the operations which return answers. In

particular, each supposed answer is paired with the

operation that is supposed to return it.

The output for the answer validation problem is the
word "correct" if the answers given in the input match

the answers that would be generated by actually per-

forming the operations. The output is the word "in-
correct" if the answers do not match. It is also useful

to allow the output word to say "_ll-formed ". This out-

put is used if the sequence of operations is in-formed,

e.g., an operation has too many arguments or an ar-

gument refers to an inappropriate object.
The answer validation problem is similar to the ides
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of an acceptance test which h used in the recovery
block approach [10] to software fault tolerance. The

main difference is that an answer validation problem

is dependent upon s sequence of answers, not just aa

individual answer. Hence, if an incorrect answer ap-
pears in the sequence, it may not be detected imme-

diately. It is guaranteed, however, that an incorrect

will be detected at some point during the processing

of the entire sequence. By allowing for this latency in
detection, it is possible to create a much more effideat

procedure/'or solving the answer validation problem.

The most important aspect of the answer validation

problem is the fact that is is often possible to check the

correctness of the answers to a sequence of operations

much more quickly than actually calculating what the

answers should be from scratch. In other words, the
answer validation problem has a smaller time com-

phxity than the original abstract data type problem.

For example, to calculate the answers to a sequence

of n priority queue operations takes N(nlog(n)) time
in the decision tree model; however, it is possible to

check the correctness of the answers in only O(n) time
[12]. This speed is very useful in fault-detection sp-
plications.

It is possible to run an answer validation algorithm

for some abstract data type concurrently with some

algorithm which uses the abstract data type. The an-
swer validation algorithm could act as a monitor mak-
ing sure that all interactions with the abstract data

type are handled correctly. This is valuable because

many algorithms spend a large fraction of their time

operating on abstract data types. Note, the overhead

of this monitor is less than the overhead of actually
performing the data type operations twice.

4 Schema for using Certification Trails

Suppose that we have devdoped am efficient solu-

tion to the answer validation problem for some ab-
stract data type. By efficient we mean the time com-

phxity of the answer validation problem is smaller

than the time complexity of the original abstract data

type problem. Further, suppose that we wish to run
an algorithm, say A, which uses that abstract data

type. To &pp]y the certification trail method we can

use the following schema to yield the two executions:

First Execution:

Execute algor/thm A.

Each time an abstract data type operation is per-

formed. Append to the certification trail the identity
of the operation, the arguments and the answer.

Second execution:

Phase One:

Validate the correctness of the operations and sup-
posed answers given in the certification trail. If the

validation returns "incorrect" or "ill-formed" then

output "error" and stop. Otherwise, continue.

Phase Two:

Execute algorithm A.

Each time an abstract data type operation is pet-
formed. Read the next entry in the certification trail.

Make sure that the operation and the s_guments in the

certLfication trail agree with those requested in the al-

gorithm. If not output "error" and stop. Otherwise,
use the answer given in the certification trail and con-
tinue.

This schema can yidd execution times which are
significantly faster than the execution time obtained

by running algorithm A twice. Yet the schemes yidd

comparable fault detection capabilities. Note, the first

execution can be dower than a simple execution of 11-

gorithm A since it must output a certification trail

However, the second execution can be siguLficantly

faster than a simple execution of the algorithm since

the interactions with the abstract data type take less

time overall. The net effect can yield a major speed-
up.

Suppose an algorithm uses multiple abstract data
types and suppose there are efficient answer validation

algorithms for each of these abstract data types. It is

easy to see how our method generalises. We can leave
behind a generalized certification trail which consists
of s seperate certification trail for each of the abstract

data types. The effect on the speed up of the second
execution will be cumulative.

5 Generalized Priority Queue

We now describe a somewhat genera] abstract data

type. We srs able to solve the answer validation prob-
lem for restricted versions of this data type. The data
consists of a set of ordered pairs. The first dement in

these ordered pairs is referred to as the item number

and the second dement is called the key value. Or-

dered pairs may be added and removed from the set,
however, at all times the item numbers of distinct or-

dered pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key vnlue.

In this paper the item numbers are integers between
1 and n, inclusive. Our default convention is that i is

3o2
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an item number, k is a key value and h is a set of or-

dered paL-s. A total ordering on the pairs of a set ¢u

--be defined lexicog_sphies]]y as follows: (i,/,) < (ir, km)

iff k < k# or (k = k _ and i < i'). The abstract data

itypes we will consider support a subset of the following

•-- operations.

member(i) returns a boolean value of true if the set
contains an ordered pair with item number i, oth-
erwise returns false.

insert(/, &) adds the ordered pair (i, k) to the set. We

require that no other pair with item number i be
_ in the set.

delete(i) deletes the unique ordered pair with item
number i from the set. We requi_e that a pair

-- ,with item number i be in the set initis]]y.

changekey(i, k) is executed only when there is an or-

_--_ dered palt with item number i in the set. This

_ is replaced by (i,/_).

_ deletemin returns the ordered pair which is smallest

_; sccordin 8 to the total order defined above sad
deletes this pair. If the set is empty then the

tol_en aemptyU is returned.

mln returns the ordered pair which is smallest accord-

-- ing to the tots] order defined above. If the set is

empty then the token "empty" is returned.

o max ud deletemax these operations are similar to

-" rain and deletemin, using the largest element in-

stead of the smallest one.

If u operation violates one of the requirements de-
-- scribed above then it is considered to be ill-formed.

Also, if u operation has the wrong number or type of

arguments it is considered to be ill-formed.

-= Many different types and combinations of data
structures can be used to support different subsets of

.=- these operations efficiently. Specifically we are inter-

¢_ted in s]lowing the insert, delete, min, and deletemin
operations. It is possible to process a sequence of O(n)

operations in O(n log(n)) with implementations using

_ heaps or balanced search trees such as AVL trees [I],
--'_ red-black trees [6] or b.trees [3). Answer validation

of these operations can be performed in O(n) time

p2, t3].

6 Examples of the use of Data Struc-

ture Certification

In this section we evuluste the use of certification

trails for data structures as applied to four well-known

and significant problems in computer science: sorting,

the shortest path tree problem, the Huffmsn tree prob-
lem, and the skyline problem. We have implemented

basic algorithms for these problems and algorithn_,

which generate and use certification trsiis. Timing

data was collected using a SPARCststion ELC.
The timing information reported in the tables con-

slats of the run time of the basic algorithm (i.e., no

certification trail), the run time of the trsi]-generating

algorithm, the run time of the tral]-using algorithm,

the percentage savings ofnsing certification trsi_, and
the speedup achieved by the second phase of the eerti-

fication trail method. The percentage savings is com-

puted by comparing the tots] run time of algorithms

for generating ud using trails against twice the run
time of the basic algorithm. The speedup is computed

by dividing the run time of the basic s]gorlthm by the
run time of the algorithm that uses the certification

trail.

Apart from the data structures, the implements-
tion of both phases of the certification tral] version of

each algorithm is nearly identical to the implements-
tion of the basic version. The only difference in the

code for the two phases is a parameter passed to the
data structure code indicating whether a certification

trail should be generated or used. All code implement-

ing the certification trs]Is is localised to the modules

implementing the data structures, snowing the gener-
ation and use of the trail to be transparent to the

of these modules. Due to space constraints only an

abbreviated discussion of the algorithms is given.

6.1 Heapsort

Sorting is a fundamental operation in computer sys-

tems, and there exist severs] sorting algorithms. Sort-

ing may be implemented with a priority queue (or

more specifically, a heap) by inserting all elementJ
and performing deletemin operations until the queue

is empty.
Input data was generated by creating sets of inte.

gets chosen uniformly from the interval [0, I0000000].

Timing results are based on fifty executions at each

input size.

6.2 Huff'man Tree

Given a sequence of frequencies (positive integer,),
we wish to construct s Huffmu tree, i.e., s binary tree

with frequencies assigned to the leaves, such that the
sum of the weighted path lengths is minimised. This

is a classic algorithmie problem and one of the origins]
solutions was found by Huffmsn [71. It has been used
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Sis* Buie Generate

Al|oritkm *Frail
1000o 0.44 0.4|

20000 O,M 1.00
ItO000 2.5'1 2.8O

1O0000 1.87 0.01
200004) 12.?I 12.01

8O0000 10.07 20.21

Use _ 5avi:! Speedup
Trail

0.11 M.M 4.00
0.20 87.24 4.26
0.e0 17.17 4.11

1.29 17._ 4.TY
2.47 10.|0 1.11
1.71 10.04 i.2"

Table 1: Heapsort

Siam Ms*So Generate Use

All[orltkm Trail Trail
|0_ 0.88 0.41 0.14

100<)0 ' O.U"" 0.87 0.30
20000 I.?B 1.00 0.01

10000 4.0t 1.80 1.18
100000 10.71 11.45' 8.12
110004) 14J.5'0 17.87 4.66

Table 2: Huff'man Tree

Snvin s Speedup

27.e1 2.-_

80.12 2.86
20.11 2.041

_0.71 1.|3

12.14 1.41
11.14 8.$1

extensively in data compression algorithms through

the design sad use of so called Huffmsn codes. The

tree structure and code design are based on frequencies

of individual characters in the data to be compressed.

In this paper we ate concerned only with the Huff-

man tree, the interested reader should consult [7] for

information about the coding application.
The Huffman tree is built from the bottom up and

the overall structure of the algorithm is based on the

greedy "merging" of subtrees. An array of pointers,

par, is used to point to the subtrees as they are con-

structed. Initially, n single vertex subtrees are con-

structed, each one associated with a frequency num-

ber in the input. The algorithm repeatedly merges the

two subtrees with the smallest associated frequency

values, assigning the sum of these frequencies to the

resulting tree. A priority queue data structure allows

the algorithm to quickly find the subtrees to merge at
each step.

Data for the timing experiments was generated by
choosing integer frequencies uniformly from the range

[0, 100000]. Timing results are based on fifty execUo
tions for each input sine.

6.3 Shortest Path

Given a graph with non-negative edge weights end

a source vertex, we wish to find the shortest paths
from the source vertex to each of the other vertices.

This is another classic problem and has been examined

extensively in the literature. Our approach is applied

to Dijkstra's algorithm.

Dijkstra's algorithm is a greedy algorithm. At each
step, there exists a set of vertices S to which shortest

paths are known, and a set T of vertices adjacent to

members of this set. The best paths known to mere-

304

Sis* B_e Genentte Use _ Ssvin I

Al|orithm *I_sil Trail
ll0,2I(X) 0.11 0.14 0.06 JJB._J
SO0,SO00 O.IS 0.12 0.11 ii.71

710e7100 0.10 0.151 0.10 M.II

lOOOv10000 0.70 0.78 0.21_ 8'7'.07
2000,20000 1.74 1 .el 0.$2 17.4;4
2500,210_0 2.22 ..... 2.041 O.es 111.11

Table 3: Shortest Path

Speedup

2.10
3.t1

2.01
1.141
I.II

1.42'

bets of T are examined, and the vertex e, with the

minimum path length is removed from T end added to
S. A data structure that supports insert, delete, ud

deletemin can be used to implement this algorithm.

Input graphs of IVJvertices end I_l edgeswere gen-

erated by choosing a set of [El distinct edges uniformly
from all possible such sets, then rejecting graphs that

were not connected. JEJ wu chosen sufi_ciently large

that each selection is connected with high probability,

resulting in few rejections. The input sizes were cho-

sen to keep the ration I_l/IVI constant, for in practice

the running time of the algorithm is affected by this

ratio. Timing results are based on fifty executions at

each input sine. The sise column of Table 3 contains

an ordered pair indicating the number of vertices and

edges.

6.4 Skyline

Given a set of rectangles with with collinear bot-

tom edges, the skldine is the figure resulting from re-

moving All hidden edges. The problem of computing
the skyline of a set of rectangular buildings by elim-

inating hidden lines is discussed in [8]. The method

used is divide and conquer and it constructs a sky-

Fee in O(nlog(n)) time. In this paper we use a plane

sweep algorithm that can be easily implemented in
terms of operations on priority queues. Plane sweep

algorithms are widely used for computational geom-
etry problems [9], end typically use a priority queue

for event scheduling, and may be amenable to use of

certification trsil techniques.

Using n plane sweep algorithm, we compute the
skyline as follows. Iuitialise a vertical sweep line to

the left of all the rectangles (we may assume that all

rectangle are to the right of the y-axis). As we sweep

the line to the right we maintain a collection of the

heights of the rectangles encountered. For each rect-

angle R, the height of R is added to the collection

when we encounter R's left edge and removed when

we encounter its right edge. The height of the skyline

at say point re, is the maximum height in the collec-

tion when the sweepline is at z = re. Details are given

below. A structure supporting insert and deletemin is



al_ Eui¢
-'-:- AiSor/th,,

0.||O.Se
1.?1

o.so
ls.2e

Gonerste 'Use
')_r_l Trail

0.2'J' 0.11
0._ 0.2|

1.70 0,$8
4.01 1.17'
$.74 LSS

14,02 S.ii

Table 4: Skyline

'_ $aviuf Speedup

34.00 2.27

=7.u --2.iC---
80.70 2.g| --

|2.00 $.SO --
111.71 1.14
15.00 S.?4 --

_dl that is needed to order the events, and a structure

-- supporting insert, max, and delete is required to store

the rectangle heights. A priority queue (supporting

insert and can be used to order the sweepllne events,
!..._ and a geners]ised pr[c_rity queue to store the rectangle

heights.

Input data was generated by choosing integrs] rect-

_ angle heights uniformly over the range [0, I00000].
The _-eoordinates of the left edges were chosen uni-

_ formly over the range [0, 90000] and the width of

each rectangle was chosen Uniformly over the range
"" [I, 10000]. Timing restdts are based on twenty execu-

tions for each input sise.

. +

7 Conclusions

D

The experiments] data in this paper shows the util-

ity of the certification trail approach using abstract

data types. This paper supplements [13] which pro-

--' rides experimental data illustrating the advantages of
implementation specific certification trails over classi-

cal time redundancy. We have shown that the more

--general approach of checking abstract data types also
provides performance superior to classical time redun-

dancy. This is significant because s wide range of S]-

gorithms may be represented as a sequence of oper-
ations on abstract data types. The certification trail

approach may therefore be used on these programs,

_without requiring per problem %d hoc" techniques.
= _Creation offibrary routines or class libraries for these

data types allows the certification trail technique to be

used truspatently, and may s]]ow it's use with only
minor modifications of existing code.
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Algorithm MINSPAN(G,weight )
8' q

Input, Connected groph G • (V, E) where V • ,[I, .... n_,with edge weights,
Output, Sponning tree-of G which hos minemum weight
| CHOOSE root •V
2 FOR ALL u q V, key(u),.oo END FOR
3 h:=O; v:,rOOt
4 WHILE v # empty DO
5 keyLv):, --¢D
6 FOR EACH [v,w]t E DO
7 IF weight[[v,w])<key{w ) THEN
8 key (w):. weight [[v,w]);prefer (w): • [v,w]
9 IF member(w,h) THEN chonQekey (w, key(w).h)
I0 ELSE insert {w, key {w).h) END IF
II END IF
12 END FOR

13 (v,k):.delelemin [h)
14 END WHILE

15 FOR ALL u t V- _'rootlt,oUTPUT (prefer{u)) END FOR
END MINSPAN _ J

u

N

FIG. 3

M

l



U.S. Patent Sep. 7, 1993 Sheet2 of 6 5,243,607

FI G.2 (o) _ FIG. 2(# )

soo..(D,,,_oo
®'"'" ® ""'®

2_00

,oo--.._-_,o ® ® ®

FIG.Z(c/ o.,_-oo FIG.Z(d/ __ --°

.® ,,oo
® ® ®: , ® $

FIG. 2 re) _[oo FIS. Z (f ) (_o

u %:::'°.....®
U

E_
= =



..._.

1wall

m
D

U.S. Patent Sep. 7, 1993

m

0 = 0

2 2

4 4

6 6

7

FIG.4(o)

Sheet 3 of 6 5,243,607

FIG.

w

L_

l

Algorithm HUFFMAN (FREO)
Input; Sequence of positive integers FREQ.,{f[1],f[Z],...,f[n)}

Output: Pointer tooHuffmon tree for the inl_ut frequencies
1 FORi:,t ton DO

2 insert (i,f (i],h)

:5 per [i], • ollocote()
4 into [ per [i]]:, (;,f [i])
5 END FOR

6 FORJ:,n+I to 2n-I 00
7 (itemS, keyS): - deletemin(h)

8 (item 2, key2): • deletemin (h)

9
I0
II
It>

13

ptr (j): • oilocote t)
info[ptr [j]]: ,(j,key 1 • key2)
left [ptr(j]],• ptr (item1)
riQht(ptr(j|]',plr (item 2)
insert (j,key 1 • key 2,h)

14 END FOR
15 OUTPUT |ptr [2n-1])
END HUFFMAN

FIG. 5

m
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AIg_ithm CONVEXHULL(S)
Input: Set of pointS, S, in R 2
Output:Counterclockwise sequence of points in R 2 which define COnVeX hull of S
I Let pl be the point with the Iorgest x ¢oocdinote [ end smolleSt y tO breok ties)
2 For eoch point p [except pt| colcutote the slope of the line through pl end p
3 Sort the points te_cept pt) from the smoltest slope to the Iorgest. Coil themp2,...,on

4 qt:spt;q2:sp2;q3:'P3; m=3
5 FOR k • 4 ton O0
6 WHILE the ongle formed by qm-l,qm.pk is _ 180 degrees DO m := m-t END FOR
7 m := m+l

U qm := pit
9 END FOR
IOFORi= I to m IX), OUTPUT(qi) END FOR

END CONVF..XHUL L

FIG. 7
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METHOD AND APPARATUS FOR FAULT
TOLERANCE

LICENSES

The United States Government has a paid-up non-
exclusive license to practice the claimed invention
herein as per NSF Grant CCR-8910569 and NASA
Grant NSG 1442.

FIELD OF THE INVENTION

The present inventionrelatesto faulttolerance.More

specifically,the presentinventionrelatesto a tetrstalgo-

rithm that provides a certification trail to a second algo-
rithm for fault tolerance purposes.

BACKGROUND OF THE INVENTION

Traditionally, with respect to fault tolerance, the
specification of • problem b given and an algorithm to
mlve it is constructed. Thb algorithm b executed on an
input and the output is stored. Next, the same algorithm

is executed •gain on the tame input and the output is
compared to the earlier output. If the outputs differ then
In error is indicated, other_se the output is accepted u
correct. This software fault tolerance method requires
additional time, to called time redundancy [Johnson, B.,
Design and analysis of fault tolerant digital systems,
Addison-Wesley, Reading Mass., 1989; Siewiorek, D.,
and Swarz, R., The theory and practice of reliable de-
sign, Digital Press, Bedford, Mass., 1982]; however, it
requires not additional software, h is particularly valu-
able for detecting errors caused by transient fault phe-
nomena. If such faults cause an error during only one of
the executions then either the error will be detected or
the output will be correct.

A variation of the above method uses two separate
algorithms, one for each execution, which have been
written independently based on the problem specit'w.a.
•ion. This technique, call N-version programming
[Chert, L, and Avizienis A., "N-version programming:
a f•uh tolerant approach to reliability of software oper-
ation," Digest of the 1978 Fault Tolerant Computing

Symposium, pp. 3-9, IEEE Computer Society Press,
1978; Avizienis, A., "The N-version approach to fault
tolerant software." IEEE Trans. on Software Engineer-
rag. vol. 11, pp. 1491-1501, December, 1985] (in this
case N -- 2), allows for the detection of errors caused by
tome faults in the software in addition to those caused

by transient hardware faults and utilizes both time and

software redundancy. Errors caused by software faults
are detected whenever the independently written pro-
grams do not generate coincident errors.

SUMMARY OF THE INVENTION

The present invention pertains to • method for
achieving fault tolerance in a computer system having
st least • first central processing system and a second
central processing system. The method comprises the
stein of first executing a first algorithm in the first cen-
tral processing unit on input which produces a first
output as well as a certification trail. Next, executing a
second algorithm in the second central processing unit
on the input and on at least a portion of the certification

trail which produces g second output. The second algo-
rithm has a farter execution time than the first algorithm

for a given input. Then, comparing the first and second

outputs such that an error resuh is produced if the first
and second outputs are not the raune. The step ofexecut-

5,243,607
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ing a first algorithm and the step of executing a second

algorithm preferably takes place over essentially the
uune time period.

The present invention also pertains to a method for
S achieving fault tolerance in It central processing unit.

The method comprises the stein of executing a ftr_t
algorithm in the central processing unit on input which
produces the first output as well as t cenifw.ation trail.

I0 Then' there is the step of executing a second algorithm

in the central processing unit on the input and on at least
a portion of the certifcadon trail which produces t
second output. The tecond algorithm has a faster execu-

tion time than the ftru algorithm for a given input.
15 Then, there _ the step ofcompar_g the first and second

output, such that an error result is produced ff the first
and u_cond outputs are not the same.

The preterit invention also per•sire to a computer

system. The computer tyMem comprises • first com-

_0 peter. The first computer has a first memory. The first

computer also has a first central processing unit in com-
munication with the memory. The fu'st computer addi-
tionally has • first input port in communication with the

2S memory in the fmtt central processing unit. There is a
first algorithm disposed in the first memory which pro-
duces a first output as well as a certification trail based
on input received by the input por_ when it is executed

by the first central processor. The computer system is

30 additionally comprised of a second computer, The sec-
ond computer is compnsed of a second memory. The
secood computer is also comprised of a second central

processing urut in communication with the memory t,'KI
the first central processing unit. The second computer

35 additionally is comprised of a second input port in com-
munication with the memory in the second central pro-

cessing unit. There is a second algorithm disposed in the
second memory which produces a second output based
on the input and on at least a portion of the cerfificatiou

40 trail when the second algorithm is executed by the sec-

ond central processing UniL The second algorithm has a

faster execution time than the first algorithm for a given

input. The computer system is tho comprised of a

45 mechanism for comparing the first and second outputs
such that an error result is produced ff the fu_t and
second outputs are not the same.

Moreover. the present invention also pertains to a

computer. The computer is comprised of a memory.
50 Additionally, the c_nputer is compn.,,ed of a central

processing unit in communication with the memory.
The computer is additionally comprised of a first input

port in communication with the memory and the cenmd
processing unit. There is • first algorithm disposed in

5S the memory which produces a first output as well as a
certification trail based on input received by the input

port when the _nput is executed by the first central

processor There is a _cood algorithmalsodisposed in

the memory which produces a second output based on6O
the input and on at least a portion of the ce_tion

trail when the second algorithm is executed by the cen-
tral processing unit. The second algorithm has a faster

execution time than the first algorithm for a given inpUL
6_ Moreover, the computer is comprised of a mechanism

for comparing the fu'st and second outputs such that an

err'or result is produced if the first and _cond outputs
are not the same.
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BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, the preferred em-
bodiments of the invention and preferred methods of

practicing the invention are illustrated in which: 5
FIG. 1 is a block diagram of the present invention.
FIGS. 2A through FIG. 2F shows an examples of a

minimum spanning tree algorithm.
FIG. 3 with the source code for • mince man algo-

rithm. I0
FIG. 4A and 4B shows an example of • data structure

used in the second execution of a mince man algorithm.

FIG. S with the source code for • Huffmaa algo-

rithm.
FIG. 6 shows an example of a Huffman tree. 15
FIG. 7 with the tource code for Grahtm's scan algo-

rithm.
FIG. IA through FIG. SC shows t convex hull exam-

pie.
FIG. 9 is a block diagram of an apparatus of the 20

present invention.
FIG. 10 is • block diagram of another embodiment of

the present invention.
FIG. !1 is • block diagram of another embodiment of

the present invention. 25

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The central idea of the present invention, essentially •
fault tolerance mechanism, as illustrated in FIG. I, is to

modify a first algorithm so that it leaves behind • trail of
data which is called a certification trail. This data is
chosen so that it can allow • second algorithm to exe.

cute more quickly and/or have • simpler structure than
the first algorithm. The outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, care must be taken in defining
this method or else its error detection capability might

he reduced by the introduction of data dependent be-
tween the two algorithm executions. For example, sup-

pose the first algorithm execution contains • error
which causes an incorrect output and tn incorrect trial
of data to be generated. Further suppose that no error
occurs during the execution of the second algorithm. It
still appears pos_'ble that the execution of the second

algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be "fooled" by the
data left behind by the fh'_t execution. The definitions
given below exclude this possibility. They demand that
the second execution either generates • correct answer

or signals the fact that an error has been detected in the
data trail. Finally, it should be noted that in FIG. I both
executions can cignal an error. These errors would in-
clude run-time errors such as divided-by-zero or non-
terminating computation. In addition the second execu-

tion can signal error due to an incorrect certification
trail. The fault tolerance means can be used in hardware

or software systems and manifested as firmware or soft-
ware in a central processing unit.

A formal definition of a certification trail is the fol-

lowing.
Definition 2. !. A problem P is formalized as • relation

(that is, a set of ordered pairs). Let D be the domain
(that is, the set of inputs) of the relation P and let S he

the range (that is, the set of solutions) for the problem.
It can be said an algorithm A solves a problem P if for

3O

35

all d e D when d is input to A then an s ( S is output such

that (d,s) _ P.
Definition 2.2. Let P : D - S be • problem. Let T be

the set of certification trails. A solution to this problem

using a certification trail consists of two functions Ft
and F2 with the following domains and ranges Ft:D ---

S × T and FvD × T -- SO error. The functions must

satisfy the following two properties:
(1) for all d E D there exists s _ S and there exists t (

T such that Fred) -- (t,t) and F2(d,t) -- s and (d,s) _ P

(2) for all d E D and for all t E T either (Fz(d,t) = s and

(d,s)_ P) or F_(d,t) = error,
The definitions above assure that the error detection

capability of the certification trail approach is compara-
ble to that obtained with the simple time redundancy

approach discussed earlier. That it, if _t hard-
ware faults oc_gr during only one of the executions
then either an error will be det_ted or the output will
be correct. It should be further noted, however, the
examples to be considered will indicate that thisnew

approach can also save overall execution time.
The certification trial approach also allows for the

detection of faultsin software.As in N.verdon pro-

gramming, separate teams can write the q_ecificatio_
now must include precise information describing the

generation and use of the certification trial. Because of
the additional data •vai]ahle to the second execution,

the specifications of the two phases can be very differ-
ent; similarly, the two algorithms used to implement the

phases can be very different. This will be illustrated in
the convex hull example to be considered later. Aherna--

tively, the two algorithna can be very dmilar, differing
only in data ttructure manipulations. This will be illus-
trated in the minimum spanning tree aad Huffman tree
examples to be considered later. When dgnifw.aady
different algorithms are used it is sometimes possible to

save programming effort by •hating program code.
While this reduces the ability to detect errot_ in the

software it does not change the ability to detect •ran-
dent hardware errors as discussed earlier.

With respect to the above., it has been assumed that
our method is implemented with software; however, it
is clearly possible to implement the certification trail

technique by using dedicated hardware. It is also pore-
45 ble to generalize the basic two-level hierarchy of the

certification trial approach as illuslrated in FIG. 1 to
higher levels.

Examples of the Certification Trail Technique

50 In this section, there is illustrated the use of certifica-

tion trails by means of applications to three well-known
and signifw.ant problems in computer t_moe: the mini.
mum spanning tree problem, the Huffman treeproblem,
and the convex hull problem. It thould be stressed here

SS that the certification trail approach is not limited to

these problems. Rather, these algorithms have been
selected only to give illustrations of this technique.

Minimum Spanning Tree Example

60 The min_um spanning tree problem has been exam-
ined extensively in the literature and an historical _r-
vey is given in [Graham, R.L., "An efficient algorithm
for determining the convex hull of • planar set", Infor-
mation Procetsing Letters, pp. 132-133, I, 1972]. The

65 certification trial approach is applied to a variant of the
Prim/Dijkstrt algorithm ]Prim, R.C., "Short¢_t c_a-
nection networks and some generalizations,: Bell Syst.
Tech. J., pp. 1389-1401, November, 195']; Dijkstra, E.

u



i =

L_m

L_

m

m

m

=

w

m

$
5,243,607

6
W., "A note on two problems in connexion with
graphs," Numer. Math. I, pp. 269-1984, Jun. 20-22] as
explicated in [Tarjan, R.E., Data Structures and Net-

work Algorithms, Society for Industrialand applied

Mathematics, Philadelphia,Pa. 1983].The discussionof S

the applicationof the certificationtrailapproach to the
minimum spanning treeproblem beings with some pre-
liminary definitions.

Definition 3.1. A graph G = (V,E) consists of a ver-
tex set V and an edge set E. An edge is an tmordered 10

pair of distinct vertices which is notated as, for example,
Iv,w], and it is said v is adjacent to w. A path in a graph
from V l to vt is • sequence of vertices v i, v2 ..... vt such
that [vt, v! - t] is an edge for i ( [1 ..... k - !]. A path
is • cycle if k > I and vt = vs. An acyclic graph is a iS

graph which contains no cycles. A connected graph is a
graph such that for all pairs of vertices v,w there is •
path from v to w. A tree is an •cyclic and connected

graph.
Defmition 3.2. Let O = (V,E) be • graph and let w be 20

• positive rational valued function defined on E. A
subtree of G is • tree, T(V',E'), with V' C. V and E' C

E. It is said T spans V' and V' is spanned by T. If V' ,=
V then we say T is • spanning tree of G. The weight of
this tree is _e ¢Ew(e). A minimum spanning tree is a 2S
SlUmning tree of minimum weight.

Data Structures and Supported Operations

Before discussion of the minimum spanning tree algo-
rithm, there must be described the propert_ of the 30

principle data structure that are required. Since many
different data structures can be used to implement the
algorithm, initially there is described abstractly the data
that can be stored by the data structure and the opera.
tions that can be used to manipulate this data. The data 35

consists of set of ordered pairs. The first element in

these ordered pairs is referred to as the item number and
the second element is called the key value. Ordered
pairs may be added and removed from the set; however,
at all times, the item numbers of distinct ordered pairs 40
must be distinct. It is possible, through, for multiple

ordered pairs to have the same key value. In this paper
the item numbers are integers between ! and n, inclu-
sive. Our default convention is that i is an item number,
k is a key value and h is • set of ordered pairs. A total 45

ordering on the pairs of a set can be defmed lexico-

graphically as follows: (i,k) < (i',k') iff k < k' or 0t --
k' and i < i'). The data structure should support a subset
of the following operations.
member (i,h) returns • boolean value of true if h con- 50
rainsan ordered pairwith item number i,otherwise
returns false.

inser: (i,k,h) adds the ordered pair (i,k) to the set h.
delete (i,h) deletes the unique ordered pair with item

number i from k 55

changekey (i,k,h) is executed only when there is an

ordered pair with item number i and h. This pair is
replaced by (i,k).

deletemin Oa) returns the ordered pair which is smallest
according to the total order defined above and de- 60
ietes this pair. If h is the empty set then the token
"empty" is returned.

predecessor (i,h) returns the item number of the ordered
pair which immediately precedes the pair with item

number i in the total order. If there is no predecessor 65
then the token "stoat]eat" is returned.

Many different types and combinations of data struc-
tures can be used to support these operations efficiently.

In our case, there is used two dtfferent data structure

methods to support these operations.One method will
be used in the first execution of the algorithm and an-

other, faster and simpler, method will be used in the
second execution. The u_ond method relies on a trail of

data which is output by the first execution.

MINSPAN ALGORITHM

Before discussing precise implementation details for
these methods the overall algorithm used in both execu-

tions is presented. Pidgin code for this algorithm ap-
pears below. In addition, FIG. 2 illustrates the execu-
tion of the algorithm on • sample graph and the table
below records the data _ructure operations the algo-
rithm must perform when run on the sample graph. The

fur column of the table gives the operations except
member and the parameter h dropped to reduce clutter.
The second column gives the evolving contents of h.
The third column records the ordered pair deleted by
the deletemin operation. The fourth column records to

certification trail corresponding to these operations and
is further discussed below.

The algorithm uses • "greedy" method to "grow" •

minimum spanning tree. The algorithm starts by choos-
ing an arbitrtry vertex from which to grow the tree.
During each iteration of the algorithm a new edge is

added to the tree being con_ructed. Thus, the set of
vertices spanned by the tree increases by exactly one
vertex for each iteration. The edge which is added to

the tree is the one with the smallest weight. FIG. 2
shows this process in action. FIG. 2(a) shows the input-
graph, FIGS. 2(b) through 2(e) thow several stages of
the tree growth and FIG. 2(/) shows the final output of
the minimum spanning tree.The solid edges in FIGS.
2(/)) through _e) represent the current tree and the
dotted edges represent candidates for addition to the
tree.

To efficiently find the edge to add to the current tree
the algorithm uses the data structure operations de-
scn'bed above. As soon as a vertex, say v, is adjacent to
some vertex which iscurrently spanned it is inserted in
the set h. The key value for v is the weight of the mini-
mum edge between v and some vertex spanned by the

current tree. The array element prefer (v) is used to

keep track of this minimum weight edge. As the tree

grows, information is updated by operations such as
insert O,k,h) and clumgekey (i,k,h).

TABLE !

13_ta_ operttiom tad c_ttflc_tioe
tr_ forMINSPAN

Set o4'OM_M bin Dek._ Tmfl

uu,_(L,_0o) (2.1o0) ta_nm
Uuert(_,SO0) _(6,_0) 2
ckksem_ ((_00) (2.2OO)
imen(3,tO0) (6.sco),O.Imo) 6

• c_|ekey_6,4_g3) . ((k450),(.1,SO0) m_.[ksl

imm'gT.50S) (6,450),(7.505).O.I_0) 6

dek.'_mm 0.505),O._0) (_4SO)
euert(S,2SO) (S,2S0),O,S0f_,t00}
c.hu&'elm2_, 49S) ($,2S0),0,495),0.800) S

O,4_),_,JO0) (S.2S0)
chu_kc_,3..)SO) OJ_O).O._ts) mumeu
iatut(4,700) O,.] _) ),(7 .494J ),( 4,'NX)) 7

dek, temla ¢'/.495 ),(4.700) (m.350)

clumlekc_4,6SO) 0,495),(4.6S0) ?

dekusm (4,6S0) a.4_)
(4.6_I,0)

deletemia mlXy
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The deletemin (h) operation is used to select the next
vertex to add to the span of the Current tree. Note, the
algorithm does not explicitly keep a set of edges repre-

senting the current tree Implicitly, however, if (v,k) is
returned by deletemin then prefer (v) is added to the 5
current tree.

in the first execution of the MINSPAN algorithm,
the MINSPAN code is used and the principle data

structure is implemented with • balanced tree such s¢ an
AVL tree [Adel'son-Vei'tkii, G.M., and Landis, E.M., 10

"An algorithm for the organization of information",
Soviet Math. Doid.. pp. 1259-1262, 3, 1962], • red-black

tree [Guibas, LJ., and Sedgewick. R., "A dichromatic
Framework for balanced trees", Proceedings of the
Nineteenth Annual Symposium on Found•dons of IS

Computing, pp. 8-21, IEEE Computer Society Press,
1978] or a b-tree [Bayer, g., and McCreight, E., "Orga-
nization of large ordered indexes", Acts Inform., pp
173-189, !, 1972]. In addition, an array of pointen in- 20
dexed from ! to n is used. The balanced search tree
stores the ordered pairs in h and is based on the total
order deu;ribed earlier. The array of pointers it initially
all nil. For each item i, the ith pointer of the array it

used to point to the location of the ordered pair with 25
item number i in the balanced search tree. If there is no

such ordered pair in the tree then the ith pointer is nil.
This array allows rapid execution of operations such as
member (i,h) and delete (i,h).

The certification trail is generated during the first 30
execution as follows: When CHOOSE root _ V it exe-
cuted in the first step, the vertex which is chosen is

output. Also, each time insert (i,k,h) or changekey
(i,k,h) are executed, pred_r (t,h) is executed after-
wards, and the answer returned is output. This is illus. 35
trated in column labeled "Trail" in the table above.

The second execution of the MINSPAN algorithm

also uses the MINSPAN code; however, the CHOOSE

construct and the data structure operations are imple-

mented differently than in the fist execution. The 40
CHOOSE is performed by simply reading the first ele-
ment of the certification trail. This guarantees the utme

choice of a starting vertex is made in both executions.

FIG. 4 depicts the principal data structure used which is
called an indexed linked list. The array is indexed from 45

I to n and contains pointers to • singly linked list which
represents the current contents of h from smallest to
largest. The ith element of the array points to the node
containing the ordered pair with the item number i if it
is present in h; otherwise, the pointer is nil. The 0th 50

element of the array points to the node containing (¢3,
-INF,. Initially, the array contains ui] pointers except
the 0th element. In order to implement the data struc-
ture operations, the following is provided.

To perform insert (i,k.h), it is necessary to read the S5
next value in the certification trail. This value, say j, is

the item number of the ordered pair which is the prede-
cessor of (i,k) in the current contents of h. A new linked
list node is allocated and the trail information is used to
insert the node into the data structure. Specifically, the 60

ith array pointer is traversed to a node in the linked list,
say Y. (If j =- "smallest" then the 0th array pointer it
traversed.) The new node is inserted in the list just after

. n6de Y and before the next node in the linked list (if
/'_there it one). The data field in the new node is set to (i,k) 65

_- # and the ith pointer of the array it set to point to the new
" node. FIG. 4 shows the insertion of(T,50$) into the data

structure given that the certification trail value is 6.

FIG. 30) isbefore the insertion and FIG. 3(b)isafter

the insertion.
When the insert operation is performed, some checks

must be conducted. First, the ith array pointer must be
nil before the operation is performed. Section, the
sorted order of the pairs stored in the linked list must be

preserved after the operation. That is, if (i',k') is stored
in the node before ('t,k) in the linked liq and (i',k") is

stored after (Lk), rhea O',k') < ('t,k) < (i", k") must hold
in the total order. If either of these checks fails then

execution halts aad "error" is output.

To perform delete (i,h) the ith may pointer is tra-
versed and the node found is deleted from the linked

list. Next, the ith array pointer is set to nil. FIG. 4 show_
the ddetioa of item number 7 if nun considers FIG. 3(a)

as depicting the data structurebefore the operation and
FIG. 3(b) depicting it _ When the delete oper-
ation is performed one check is mule. If the ith amy
pointer is ,,,I before the opendon then the execution
halt, tad "error" is output.

To perform clumgekey (t,i.li) it sullies to perform
delete (t.h) followed by insert ('_Lh_ Note, this means
the next item in the certification trail is read. Also, the
checks associated with both these two operations are

performed and the execution halts with "error" output
if any check fails.

To perform detelemin 01) the Oth array pointer is
traversed To the head of the list and the next node in the
list is accessed. If there is no such node then "empty" is
returned and the operation is complete. Otherwise,

suppose the node is Y and suppose it contains the or-.
dered pair (Lk), then the node Y is deleted from the list,
the ith array pointer it set to nil, and (i,k) is returned.

Lastly, to perform member (i,h) the ith array pointer

is examined- If it is n_ then false is returned, otherwL_
true is returned. The predecessor (i.h) operation is not
used int he second ex_utioL

This completes the description of the second execu-
tion. To show that there is descn'eed • correct imple-
mentation of the certification trail method requires a

proof. The proof has several parts of varying difficulty.
First, one must show that if the first execution is fault-
free then it outputs a minimum spanning tree. Second,
one must show that if the fu'st and second executions are
fault-free then they both output the tame minimum

spanning tree. Both these parts of the proof are not
difficult to show.

The third mote subtle part of the proof deals with the
sitxtation in which only the second execution is fault-
free. This means an incorrect certification trail may be

generated ia the first execution- In this case, it must be
shown that the second execution outputs either the
correct minimum spanning tree or "error". The checks
that were descn'bed this property by detecting any er-

rors that would prevent the execution from generating
the oorrect output.

In the first execution each data structure operation

can be performed in O0os(n)) time where [V]=n.
There are at most O(m) such ow.xadont and O(m) addi-
tional time overhead where [E]=m. Thus, the tint
execution can be performed in O(mlog(n)). It is noted

that th is algorithm does not achieve the fastest known
asymptotic time complexity which appears in Oabow,
H.N., Galil, Z., Spencer, T., and Tarjan,R.E., "Effi-

cient algorithms for findingminimum q_mning treesin
undirected and directed graphs," Combinatorica 6, pp.
109-122. 2. 1986. However. the algorithm presented

here has a mgnificanfly tmaller constant of proportion-

i
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Idly which makes it competitive for reasonably sized
graphs. In addition, it provides us with a relatively
simple and illustrative example of the use of a cenifica-
tion trail.

In the second execution each data structure operation 5
can be performed in O(I). There are still at most O(m)
such operations and O(m) additional time overhead
Hence, the second execution can be performed in O(m)
time. in other words, because of the availability of the

certification trail, the second execution is performed in l0
linear time. There are no known O(m) time algorithms
for the minimum spanning tree problem. Komlos [26]
was able to show that O(m) comparisons sumce to find

the minimum sparming tree. However, there is no

known O(m) time algorithm to actually fred and per- 15
form these comparisons. Even the related "verification
problem has no known linear time solution. In the veri-

fication problem the input consists of an edge weighted
graph and a subtree. The output is "yet" if the subtree
is the minimum spanning tree and "no" otherwhe. The 20
best known algorithm for this problem was created by
Tarjan ['lr'arjan, R.E., "Applications of path compres-
sion on balanced trees", J. ACM, pp. 690-715, October,
1979] and has the nonlinear time complexity of (3(-
ms(re,n)), where o(m,n) is a functional inverse of Ack- 23
erman's function. The fact that the data in a certification

trail enables a minimum spanning tree to be found in
linear time is, we believe, intriguing, significant, and
indicative of the great promise of the certification trail
technique.. 30

Huff.man Tree Example

Huff.man trees represent another classic algorithmic

problem, one of the original solutions being attn'buted
to Huff.man [Huff.man, D., "A method for the construc- 35

tion of minimum redundancy codes", Proc. IRE, pp.
1098-1101, 40, 1952]. This solution has been used exten-
sively to perform data compression through the design
and use of so-called Huff.man codes. These codes are

prefix codes which are based on the Huff.man tree and 40

which yield excellent data compression ratios. The tree
structure and the code design are based on the frequen-
cies of individual characters in the data to he com-
pressed. See Huff.man, D., "A method for the construc.

finn of minimum redundancy codes", Proc. IRE, pp.
1098-1101, 40, 1952, for information about the coding

application.

Def'mition 3.3. The Huff.man tree problem i¢ the fol-
lowing: Given a sequence of frequencies ($K_itive inte-
gers) fill, f_2] ..... t_n], construct a tree with n leaves 50
and with one frequency value assigned to each leaf so
that the weighted path length b minimized. Specifi-
ell]y, the tree should minimize the following sum: _/_
LE._en(i)f[i] where LEAF is the set of leaves, len(i) it
the length of the path from the root of the tree to the 35
leaf ie,f[i] is the frequency assigned to the leaf h.

An example ofa Huffman tree is given in FIG. 6. The
input frequencies are: f(l) = 35, f(2) = 20, f($) = 44,
1"(4) = 77, t"(5) = 23, 1(6) = 38, and f(7) = 88. The
frequencies appear inside the leaf nodes as the second 60
elements of the ordered pairs in the figure.

HUFFMAN ALGORITHM

The algorithm to construct the Huff.man tree uses •
data structure which is able to implement the insert and 63
the deletemin opefation¢ which are defined above in the

minimum spanning tree example. This type of data
_ructure is often called a priority queue. The algorithm

also uses the command allocate to construct the tree
This command allocates a new node and returns a

pointer to it. Each node is able to store an item number
and a key value in the field called info. the item numbers
are in the set (! ..... 211 - !) and the key values ate
sums of frequency values The nodes also contain fields
for left and right pointer_ since the tree being con.
structed b bimu'y.

The Huff.man tree is built from the bottom up and the
overall structure of the algorithm is based on the greedy
"merging" of subtrees. An array of pointers called ptrk
used to point to the subtrees as they are constructed.
Initially, n single vertex subtrees with the smallest
ciated frequency values.To perform a merge a new

subtree b created by tim tl]ocafing • new root node
and next Jetting the left and right pointers to the two
subtrees being merged. The frequency associated with
the new subtre¢ it the sum of the frequencies of the two
subtrees being merged. In FIG. (i the frequency associ-
ated with etch subarea it thown as the second value in

the root vertex of the subarea. Detm']s of the algorithm

are given below. Note that the priority queue data

structure allows the algorithm to quickly determine
which subtrees thould he merged by enabling the two
smallest frequency values to be found efftciently during
each iteration.

Table 2 below ill_trates the data structure operations
performed when the Huff.tram tree in FIG. 6 is coe-

structed. For _ess the initial n inset operations
have been otokted. The fu_t column gives the set of
ordered pairs in h. The second column gives the result.
of the two deletemin opegatio_l during each iteration.
Note that thh column is labeled '*TraiY' because it is
also output as the certification tra_ The third column
records the elements which are inserted by the com-
mand on line 13.

TABLE 2

Dam m-_-mr¢ openmom snd certifr_tiom
for mIFFMAN

Set of OrderedPain Tm] l_t-n

(2.20).($.23).(1.35)_6.3|).(3.44).(4.'r/).
C/.M)
(1,35).(6,31).(I,43),(3.44).(4.T_('tJII) OJ0),($,23) (I,43)
(8,43),(3,44).(9,73).(4,77),(7,M) (135_(6.31) (9,73)

'43 (9.73).(4.?'/).(I O.$'f).O.M) 0k43),(3.44) (10.17)
(10,ST),C/,II),(Ii, I _10) (9.7)).(4.'n) (11,150)
(I I,150).(12.1"f5) (IO,S'_,(?,ill) (IZI?S)
(13,325) (11.150).O2,175)(13,325)

Wurst Execution of HUFFMAN

In this execution the code entided HUFFMAN is

used and the priority queue data structure b Staple.
mented with a beap [Ttrj_, R.E., Data Structures and

Network Algorithms, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PIL 1983] or a hal.
anced search tree [Gml_L_ LJ., and Sedgewick, g., "A
dichromatic framework for balanced trees", Proceed.
ings of the Nineteenth Annmd Sympodum on Founda-
dot_ of Computing, pp. 1-21, IEEE computer Society
Pre_ 1978; Adel'son-Vel-Vel'tHi, G.M., and Landis,
E.M., "An algorithm for the ocgtnization of informs.

tion", Soviet Math. Doid., pp. 1259-1262, 3, 1962;
Bayer, R., tnd McCreight. F-, "Organization of large
ordered indexet", Acta Inform., pp. 173-189, i, 1972].
Actually, any correct implementation it _table;
however, to achieve a reasonable time complexity for
this execution the suggested implementation are dedr.
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able. the certification trail is generated as follows:
whenever deletemin (h) is executed the item number
and the key value which are returned are both output.
In the table, the certification trail is listed in the second
column.

Second Execution of HUFFMAN

This execution consistsof two parts which my be
logicallyseparatedbutwhich areperformed together
In the tint logical part, the code called _AN is
executed again except that the data structure operations
are treated differently. All insert operations are not
performed and all deletemin operations are performed
by simply reading the ordered pairs from the conifica-
lion trail. In the second logicalpart,thedatastructure
operations are "verified". Note, by "verify" it does not
mean a formal proof of correcmess based on the text of
an algorithm. The problem of verifw,ation can be formu-
lated as follows: given a sequence of insert 0,k,h) and
deletemin Oh) operations 01) operations check to tee if
the answers are correct. It should be noted that while in
our example there is only one Ix,in general there can be
multiple h's to be handled.

The description of the algorithm for the second exe-
cution can be further simplified because only tome re-
stricted types of operation sequences are generated by
the HUFFMAN code. First, it can be observed that all
elements are ultimately deleted from h before the algo-
rithm terminates; second, it can be further observed that
when an element is inserted into h, its key value it larger
than the key value of the last element deleted from h.
These two important observations allow us to _ a
sequenoe using the simplified method which is de-
scribed •ext.

Our simplified method uses an array of integers in.
dexed from ! to 2n - I. This array is used to track the
contents of h. If the ordered pair (i,k) is in h, then array
element i it set to a value of k; and if no ordered pair
with item number i is in h, then array element i is set to
• value of -- 1. Initially, all array elements are set to - 1
and then operation sequence is processed. If insert ('t,k)
is executed then array element i is checked to see if it
contains -- 1. (The value of - I is an arbitrary selection
meant to serve only as an indicator.) If array element i
does contain -1, then it is set to k. If deletemin (h) is
executed, then the answer indicated by the certification
trail, say (i,k), is examined. Array element i is checked
to see if it contains k. In addition, k is compared to the
key value of previous element in the cenif_ation trail
sequence to see if it is greater than or equal to that
previous value. If both these checks succeed then array
element i it set to - !.

If any of the checks just descn'bed above fails, then
the execution halts and "error" is output. Otherw_ the
operationsequence is considered "verified". it can be
rigorously shown that the checks descn'bed are suffi-
cient for determining whether the answers g/yen in the
certification trail are correct; this proof, however, has
been omitted for the take of brevity. Finally, it is worth
noting that to combine the two logical parts of this
execution, one can performthedata structurechecking
in tandem with the code execution of HUFFMAN.
Each time an insert or deletemin is encountered in the
code, the appropriate set of checks are performed.

Time Complexity Comparison of the Two Executions

Again, as in the minimum spanning tree example, the
availability of the certification trail permits the second

execution for the Huff'mantree problem to be dramati-
cally more efficient than the first

In the first execution of HUFFMAN, each data struc.

ture operation can be performed in O(]og(n)) time
where n is the number of frequencies in the input. There
are O(n) such operations and O(n) additional time over.
head, hence, the execution can be performed in O(n log
(n)). This is the tame complexity as the best known
algorithm for constructing Huffman trees.

In thesecondcode execution of HUFFMAN, each

data structureoperationsis performed in constant time.
Further, verifying the data structure operations are
correct takes only • constant timeper operation. Thus,
it follows that the overall complexity of the second
execution is only O(n).

Convex Hull Example

The convex huff problem b fuadamenud in computa-
tional geometry. The cettificatioz trail solution to the
generationof a convexhull is based oe • mlution due to
Graham [Graham, ILL., "An efficient algorithm for
determining the convex hull of a planar set", Informa-
tion Processing Letterg pp. 132-133_ ! 1972] which is
called "Grahsm's Scan." (For besle definitions and
concepts ia computational geometry,tee the text of
Preparata and Shamos [Preperata F.P., and Shamos
M.I., Computational geometry; an introduction. Spring-
er.Verlag, New York. N.Y., 1985J.)For dmplicity in
the diguuion which follows, it is assumed the points
are in m-nailed "general posifiou" (thisis,no three
points are colinear). It is not dit_uh to remove this
restriction.

Defmition 3.4. A convex region in Rz b a set of
points, say Q, in Rz such that foreverypairof points in
Q the line segmem connecting the points lies entirely
within Q. A polygon is a circularly ordered set of line
segments such that each line segment shares one of its
endpoints with the preceding line segment and shares
the other endpoint with the succeeding line segment in

40 the ordering. The shared endpoints are called the verti.
ces of the polygon. A polygon may also be specified by
an ordering of its vertices. A convex polygon is a poly-
gon which is the boundary of some convex region. The
convex hull of a set of points, S, in the Euclidean plane

45 is definedasthe smallestconvex polygon enclosing all

the points. This polygon is uniqueand its vertices are •
subset of the points in S. it is specified by a counter.
clockwise sequence of its vertices.

FIG. S(c) shows a convex hull for the points indicated
50 by blackdots.Oraham's can algorithmgivenbelow

constructs the convex hull incrementally in • counter-
clockwise fashion. Sometimes it is necessary for the
algorithm to "backup" the construction by throwing
some vertices out and then continuing. The first mep of

55 the algorithm selects an "extreme" point and calls it pt.
The neat two steps toil the remaining points in a way

• which is depicted in FIG. IKa), it is not hard to show
that after these three steps the points when taken in
order, PI, P2..... p,, form a simple polygon; although,

60 in general, this polygon b not convex.

Oraham's Scan Algorithm

Itis pox'hie tothinkofOraham's scanalgorithmas
removing points from this simple polygon until it be.

65 comes convex, the main FOR loop iteration adds verti-
ces to the polygonunder construction and the inner
WHILE loop removes vertices from the construction.
A point is removed when the angle test performed at
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Step 6 reveals thai it is not on the convex hull because

it falls within the triangle defined by three other points.
A "snapshot" of the algorithm given in FIG. 8(6) shows
that qs is removed from the hull. The angle formed by

q4.qs, pe is less than Ig) degrees. This means, qs lies S
within the triangle formed by o,4. pl, pc- (Note, qt ffi Pl.)
In general, when the angle test is performed, if the angle
formed by qm- l,qm, pk is less than 180 degrees, then

qm lies within the triangle formed by qm-I,pl,pk.
Below it will be revealed that this is the prinutry in/or. 10
marion relied on in our certification trail. When the

main FOR loop is complete, the convex hull has been
constructed.

First Execution of Graham's Scan
IS

In this execution the code CONVEXHULL is used.

The certif'_ttion trail is generated by adding in output
statement within the WHILE loop. Speci£_.ally, if an

attgle of lessthan 180 degrees is found ia the WHILE
loop test then the four tuple consisting of 20
qm,qm-l,pl,pk is output to the certification trail.
Table 3 below shows the four tuples of points that
would be output by the algorithm when run on the
example in FIG. 8. The points in Table 3 are given the

same names u in FIG. t(a). The £mal convex hull points 2_
ql .... qm are also output to the certification trail.
Strictly speaking the trail output does not consist of the
actual points in g 2. Instead, it consists of indices to the
original input data. This means if the odgimd data con-

fistsof st,s2, .... s,then rather than output the element 30
in R 2 corresponding to sithe number i is output. It is not
hard to code the program so that this is done.

TABLE 3

Ftm pan o( cer'af, cat_oe trail for Oraham's scan

Pc*ha ao¢ on convex lid Three sttrrotmdiag poiau

P5 P4-pl.P*

P¢ P3.Pt,Pt
I_, Pt.Pt.Pt

35

4O
Second Execution for the Convex Hall Problem

Let the certification trail consist of a set of four tu-
pies, (xt,at.bi,c0, (x2,a2,b2.c2) ..... (x,,a,,b,,c,) followed
by the suppo_ convex hull, ql,q2 ..... qm. The code
for CONVEXHULL is not used m this execution. In- 4S

deed, the algorithm performed is dramatically different
than CONVEXHULL.

It conshts of five checks on the trail data.
First, the algorithm checks for i ( (1 ..... r) that x_ lies

within the triangle defined by a/,b,, and c_. 50
Second, the algorithm checks that for each triple of

counterclockwise consecutive points on the supposed
convex hull the angle formed by the points is less than
or equal to IgO degrees.

Third, it checks that there is a one to one correspon- $$
dence between the input points and the points in (Xh
.... x,) U (ql .... ,q_).

Fourth, it checks that for i ( (I ..... r), a_)b and c_are
among the inputpoints.

Fifth, it checks that there is t unique point among the 60
points on the supposed convex hull which is a local
extreme point. A point q on the hull is a local extreme
point if its predecessor in the counterclockwise order-
ing has s strictly smaller y coordinate and its succe_
mr in the ordering has a smaller or equal y coordi. 6"5
Bate.

If any of these checks fail then execution halts and
"error" is output. As mentioned above, the trail data

actually consists of indices into the input data. this does
not unduly complicate the checks above: instead it

makes them easier. The correctnessand adequacy of
these checks must be proven.

Time Complexity of the Two Executions

In the tint execution the sorting of the input points
takes O(ulog(n) time where n is the number of input
points. One can thow that this coat dominates and the
overall complexity is O(ulog(n)).

It is pox'hie to note that, unlike the min_um span.
ning tree example and the Hufftmm tree example, the
convex hull example utilizes an algorithm in the second
execution that it not a clote variant of that used int he

first execution. However, like the previous two exam.

pie,, the seoond execution for the ootlvex hull problem
depends fundamen_lly oa the informatiou in the certifi.
cation tr_ for _ tad performance.

¢_aoztreacy ot Executions

In the three examples discmsed above, it is possible to
sum the zecoud execution before the fu_t execution lua

terminated. This is z highly dednthle csptbility when
additional hardware is available to run the teoond exe-
cution (for example, with multiprocessor machine_ or
machines with coprocessors or hardware monitors).

In the case of the minimum tptnning tree problem,
the two executiom can be run concurrently, h is only
necessary for the second execution to read the ce.rtifica-

tion trail as it is generated--one item number at a time.
Thus, there is a slight time lag in the tecond execution.

The case of the HulTman tree problem is dmilat. Both
executions can he rua coucurrenfly if the seoand execu-
tion reads the certification trail ns it is generated by the
first execution.

The case of the convex hull problem is not quite as
favorable, but it is sdll possible to partially overlap the
two executions. For example, as each 4-tuple of points is

generated by the tim execution, it can be checked by
the second execution. But the tecond execution must
wait for the points on the convex hull to be output at the
end of the first execution before they can be checked.

An additiomd opportunity for overlapping execution

occurs when the system has a dedicated comparutor. In
case it is sometimes po_'ble for the two executions

to send their output to the comparator as they generate

it. For example, this turn be done in the minimum span-
ning tree problem where the edges of the tree caq be
tent individually as they are discovered by both execu-
tiont_

Com_ ot Techniques

The certificationtrailapproach to fault tolerance.
whether implemented in hardware or so_vure or tome
combination thereof, has resemblances with other fault

tolerant techniques that have been previously proposed
and examined, but in each case there ate dgnificant and
fundamental distinctions. These distinctions are primar.
fly related to the generation and character of the certifi-
cation trail and the manner in which the secondary
algorithm or system uses the certification trail to indi.
care whether the execution of the primary system or
algorithm was in error and/or to produce an output to
he compared with that of the primary system.

To beinlk the certifr.ation trail approach might be
vie_ved as a form of N-verdon programming [Chen, L.,

and Av/zienis A., "N-version programming: a fault
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tolerant approach to reliability of software operation,"
Digest of the 1978 Fault Tolerant Computing Sympo-
sium, pp. 3-9, IEEE computer Society Press, 1978;
Avizienis, A., and Kelly J., '*Fault tolerance by design

diversity: concepts and experiments," Computer, vol. 5
17, pp. 67-80. August, 1984]. This approach specifies
that N different implementations of an algorithm be
independently executed with subsequent comparison of
the resulting N outputs. There it no relationship among
the executions of the different versions of the algo-
rithms other than they all use the tame input; each •igo-

r/thin is executed independently without any informa-
tion about the execution of the other algorithms. In
marked contrast, the certification trail approach allows

the primuy system to generate a trail of information
while executing its algorithm that is critical to the sec-

ondary system's execution of its algorithm. In effect,
N-version programming can be thought of relative to
the certification trail approach ,us the employment of •
null trail.

A software/hardware fault tolerance technique
known as the recovery block approach [RandeLl, Ba.,

"System structure for software fault tolerance," IEEE
Trat_ on Software Engineering vol. I, pp. 202-232,
June, 1975; Anderson, T., and Lee, P., Fault tolerance:

principles and practices, Prentice-Hall, Englewood
Cliffs, N.J., 1981; Lee, Y. H. and Shin, K. (3., "Design
and evaluation of a fault-tolerant multiprocessor using
hardware recovery blocks," IEEE Trans. Comput., vol

C-33, pp. 113-124, Februm'y 1984.] uses acceptaaw, e
tests and alternative procedures to produce what is to
be regarded as • correct output from a program. When
using recovery block& a program is viewed as being
structured into blocks of operations which after execu-

tion yield outputs which can be tested in some informal
sense for correctness. The rigor, completeness, and
nature of the acceptmu_ test is left to the program de-

signer, and many of the acceptance tests that have been
proposed for use tend to be somewhat straightforward
[Anderson, T., and Lee, P., Fault tolerance: principles
and practice_ Prentice-Hall, Englewood Cliffs, NJ.,
1981]. Indeed, formal methodologies for the definition
and generation of acceptance tests have thus far not
been established. Regardless, the certification trail no-
tion of a secondary system that receives the same input
as the primary system and executes an algorithm that
takes advantage of this trail to efficiently produce the
correct output and/or to indicate that the execution of
the tint algorithm w_.a correct doe, not fall into the
category of an acceptance test.

A watchdog processor is • small and simple (relative
to the primary system being monitored) hardware mon-
itor that detects errors examining information relative

to the behavior of the primary system [Mahmood, A.,
and McCluskey, E., "Concurrent error detection using

watchdog processors," IEEE Trans. on Computers,

vol. 37, pp. 160-174. February, 1988; Mahmood, A.,
and McCluskey, E., "Concurrent error detection using
watchdog processort---a survey," IEEE Tran_ on

Computent, vol. 37, pp. 160--174, February, 1988; Nam-
joo, M., and McOtmkey, E., "Watchdog processors and
capability checking,'* Digest of the 1982 Fault Tolerant
Computing Sympodem, pp. 245-248, IEEE Computer
Society Pre_ 1982.]. Error detection tetinga watchdog
pr_r it • two-phase proce_: in the _q-up phase,
information about syuern behavior b provided • priori
to the watchdog processor about the system to be moni-
tored; in the monitoring pha_ the w•tchdog processor

I0

collects or is sent information about the operation of the
system to be compared with that which was provided
during the set-up phase. On the basis of this comparison.
• decision is made by the watchdog processor ts to
whether or not an errorhas occurred.The information
about system behavior by means of which • watchdog
processor must monitor for effort includes memory

behavior [Ntmjoo, M., and McCluskey, E.,

"W•tchdog processors and capabifity checking." Di-
gest of the 1982 Fault Tolerant Computing Symposium,
pp. 248-248, IEEE Computer Society Press, 1982],
control and program flow [Eiferk J. B. and Sheth J P.,
"Processor monitoring taing asynchronous tignatuted
imttruction _" Dig. 14th Int. Conf. Fault-Tokr-

15 ant CompuL, pp. 394--39% lgM, June 20-22; lyeugar,
V. $. and Kinney, L. L., "Concurrent fault detection in
mictoprogrtmmed control unit&" IEEE Trans. Corn-

put., vol. C-M, pp. 810-821, September 1985; Kane, J.
It. and Yau, S. S., "Concurrent software fault detecdm,

_0 " IEEE Tram. Sot_vare Eag., voL SF..I, pp. 8%99,
Match 1975; i_ D., "Watchdog ptoc_r and _ac-

tun] integrity checkinib " IEEE Tran_ CompuL, vol.
C-31, pp. 681--685, July 1982; Namjoo, M., "Techniques
for concurrent testing of VLSI pr_r operatioe,"

28 Dig. 1982 Int. Test Conf., pp. 461--468, November 191;2;

Ntmjoo, M., "CERBEgUS-16: Aa architecture for •

general pu_ watchdog processor," Dig. Papen 13th
Aanu. Int. Sump. FaultTolerant Comput., pp. 216--219,
June, 1983; Shen, J. P. and Schuette, M.A., "On-line

30 self-monitoring using tignatured instruction streams,"
Ptoc. 1983 Int. Test Conf., pp. 275-282, October, 1983;,
Sridhar, T. aad Thatte, S. M., "Concurrent checking of

program flow in VLSI processors," Dig. 1982 InS- Test
Conf., pp. 191-199, November, 1982; 46,47], or remon-

38 ableness of results [Mahmood, A., Lu, D. J. and

Mccluskey, E. J., "Concurrent fault detection using a
watchdog processor and usertio_" Proc. 1983 Int.

Test Conf., pp. 622--628, October, 1983; Mahmood, A.
Enos, •. and McOuskey, E.J., "concurrent system

40 level error detection esing • watchdog processor,"
Proc. 1985 Int. Test conf., pp. 145.-152, November,

1985]. Using physical fault injection techniques, distri-
butions of errors that could be detected u_g such types
of information have been determined for some spec/fic

45 systems [Schmid, M., Trapp, R., Davidoff, A., and Mas-
ton, G., "Upu_t exposure by means of abstraction verifi-
cation," Dig. of the 1982 Fault Tolerant Competing
Symposium, pp. 237-244, June, 1982; Gunnefio, U.,
Kartuon, J., and Torm, J., "Evaluation of error detec-

50 tion schemes for using fault injection by heavy-ion radi-
ation," Dig. of the 1989 Fault Tolerant Computing

Symposium, pp. 340-347, June, 1989], and the perfor-
mance of models of error monitoring techniques that
could be realized in the form of watchdog processors

85 have been analyzed [Blough, D., and Masson, Or "Per-
formaace_dy_a of • genendized concurrent error
detection procedure," IEEE Trans- on Computers vol.

39, January, 1990.]. However, in contrast to the certifi-
cation trail technique, s watchdog p_r ut_ enly s

60 priori defined behavior check& none of which it mffi-
dent together with the input to the primary system to
efftciendy reproduce the output for direct comlmrison

with that of the primary system.
Related to the watchdog processor approach it that

65 of using executable a._enions [Andrews, D.. "SeXy•re
fault tolerance through executable tttertions," gec.
12th Asilomar Conf. Circuits, gym-, Comput.. pp.
641-645, 1978, November 6-8; Andrews, D., "Using
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executable astertiom for testing and fault tolerance,"

Dig. 9th Annu. Int. Sump. Fault-Tolerant Comput., pp.
I02-I05, 1979, June 20-22: Mahwood, A., Lu, D. J. and
McClmkey E. J., "Concurrent fault detection using a

watchdog processor and assertions," proc. 1983 Int.
Test Conf., pp. 622-628, October 1983]. An assertion
can be defmed u an invariant relationship among vari-
sbles of a process. In a program, for examples, a._er.
tons can be written as logical statements sad can be
inserted into the code to signify that which has been
predetermined to be invariably true at that point in the
execution of the program. Assertions are based on a
priod determined properties of the primary system or
algorithm. This. however, again serves to distinguish
executable assertion technique from the use of certifica-
tion trails in that a certification trail is a key to the
solution of a problem or the execution of an algorithm

that can be utilized to efficiently and correctly produce
the solution.

Algorithm-based fault tolerance [Huang, IC-H., and
Abraham, J., "Algorithm-based fault tolerance for ma-
trix operations," IEEE Trans. on Computers, pp.
518-529, voL C-33, June, 1984; Nair, V., and Abraham,
J., "General linear codes for fault-tolerant matrix opera-
tions on processor arrays," Dig. of the 1988 Fault Tol-
erant Computing Symposium, pp. 180-185, June, 1988;
"Fault tolerant FTT networks," Dig. of the 1985 Fault
Tolerant Computing Symposium, June, 1985] uses error

detecting sad correcting codes for performing reliable
computations with specific algorithms. This technique
encodes data at a high level and algorithms are specifi-
cally designed or modified to operate on encoded data
and produce encoded output data. Algorithm-based

fault tolerance is distinguished from other fault toler-
ance techniques by three characteristics: the encoding

of the data used by the algorithm; the modit'w.ation of
the algorithm to operate on the encoded data; and the
distribution of the computation steps in the algorithm

among computational units. It is assumed that at most

one computational unit is faulty during a specified time
period. The error detection capabilities of the al-

gorithm-based fault tolerance approach are directly
related to that of the error correction encoding utilized.
The certification trail approach does not require that
the data to be executed be modified nor that the funda-

mental operations of the algorithm be changed to ac-
count for these modifications. Instead, only • trail indic-

ative of aspects of the algorithm's operations must be
generated by the algorithm. As seen from the above
examples, the production of this trail does not burden
the algorithm with a dgnificant overhead. Moreover,
any combination of computational errors can be han-
dled.

Recently Bium and Kanmm [Blum, M., and Kannan,
S., "Designing programs that check their work," Pro-
oeedings of the 1989 ACM Symposium on Theory of
Computing, pp. 86-97,ACM Press, 1989] have defined
what they call a program checker. A program checker
is an algorithm which checks the output of an other
algorithm for correctness and thus it is s_mi]ar to an

acceptance test in a recovery block. An example of a
program checker is the algorithm developed by Tarjan
[Terjan, R. E., "Applications of path compression oe
balanced trees," J. ACM, pp. 690-715, October, 1979]
which takes as input a graph and • supposed minimum
spanning tree sad indicates whether or no¢ the tree
actually is • minimum spanning tree. The Blum and

Eannan checker is actually more general than this be-

cause it is allowed to be probabilistic in a carefully
specified way. There are two main differences between

this approach sad the certification trail approach, First,
a program checker may c._l the algorithm it is checking

S a polynomial number of times. In the certification trail
approach the algorithm being checked is run once.
Second, the checker is designed to work for a problem

and not a specificalgorithm. That it,the checker design
is based on the input/oetlput specification of a problem.

I0 The certification trail approach is explicitly aigorithm

being checked is run once. Second. the checker is de-
signed to work for a problem and not a tpecific algo-
rithm. That is, the checker desiga is based on the input-
/output tpecifioatioe of a problem. The certification

IS trail approach is explicitly algorithm oriented. In other
wordt, a specificalgorithm for a woblem is modified to
out put a certifications trail This trail sometimes allows

the _cond exccution to be faster than any kno, a_ pro-
gram checkers for the problem. This is the case for the

2o minimumspanuing tree probk'm.
Other hardware sad solhvare fault tolerance sad

error monitoring technique, have been proposed and
studied that might be thought ofu bearing tome resem-
blan_ to the o:rtific_don trail approach. Extensive

23 summaries and descriptions of these teclmiques can be

found in the literature [SiewioreL D., and Swarz, R.,
The theory and prac6oe of reliable da_gn, Digital
press, Bedford, Mss_, 1982; Aviztenig A., "Fault toler-

ance by moam of external monitoring of zomputer Wt-
30 terns," Procoedingt of the 1981 Natlomd Computer

Conference, pp. 27-40, AFIPS Press, 1980", Johnso_ B.,
Design and analy_s of fault tolerant digital systems,
Addison-Wesley, Reading, Mass., 1989;, Mahmood, A.,

and McClmkey, E., "Concurrent error detection using
3S watchdog proces_rt---a survey," IEEE Tram. on

Computers, voi. 37, pp. 160--174, February, 1985]. Ea-
amination of these techniques reveah,, however, that in
each case there are fundamental distinctions from the

certification trail approach. In summary, the certifica-
40 tion trail approach stands along in its employment of

secondary algorithats/Wstems for the computation of
an output for comparisou that because of the availability
of the trail not only proceeds in a more efftdent manner

than that of the primary but also can indicate whether
43 the execution of the primary algorithm was correct.

Although the invention has been de_n'bed in detail in
the foregoing embodiment, for the purpose of illustra-
tion, it is to be understood that such detail is solely for
that _ and that variations can be made therein by

50 those skilled in the art without departing from the spirit

sad tcope of the invention excep¢ as it may be described
by the following clain_

What is claimed is:

1. A method for achieving fault tolerance in • com-

33 purer system having at least a first central pro_ssing
unit and a tecond central processing unit comprmng the
steps of:

executing a first algorithm in the first central process-
ing unit on input to that a first output and a

60 cation trail are produced;
executing a second algorithm in the lecond central

proc_._ng unit on the input and on the certification
trail so that a second output is produced, said sec-
cod algorithm having a faster execution time than

65 the first algorithm for a givea input; and
comparing the first and secoed outputs such that an

error result is produced if the first and secoed out-
puts are not the same.
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2. A method as described in claim 1 wherein the step

of executing the second *lgorithm includes the step of
determining whether the certification trail is in error.

3. A method as described in claim 2 including before
the step of executing the first aigorithm, there is the step

of duplicating the input such that the input that is pro-
vialed to the step of executing the first algorithm is also
the input that is provided to the ttep of executing the
second algorithm.

4. A method as described in claim 3 wherein the step
of executing the first algorithm includes the step of

determining whether the tint output is in error.
$. A method as described in claim 4 wherein the step

of executing the fast algorithm includes the step of
determining whether the second output is in error.

6. A method as de4_ribed in claim 5 wherein the

second algorithm generates the second output correctly
when the second aigorithm is executed by the second

processing unit even if the certification trial produced
by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.

7. A "method as described in claim I wherein the

second algorithm is derived from the first algorithm.

8. A computer system comprising:

a first computer comprising:
a fast memory,

• first central processing unit in communication with
the memory,

• fast input port in communication with the memory
and the first central processing unit,

a firstalgorithm disposed in the fastmemory, raid

fastalgorithm produces a fastoutputand produces

• certification trail based on input received by the
input port when the first algorithm is executed by
the first central processor;

a second computer comprising a second memory,

a second central processing unit in communication

with the second memory and the first central pro-
cessing unit;

a second input port in communication with the sec-

ond memory and the second central processing
unit;

a second algorithm disposed in the second memory,
said second algorithm produces a second output
based on the input and the certification trail when
the second algorithm is executed by the second

central processing unit, said second algorithm hav-
ing I faster execution time than the fuzz algorithm
for • given input;and

a mechanism for comparing the fast and second out-
puts such that an error result is produced if the first
and second outputs are not the same.

9. A computer as described in claim | wherein the

second algorithm generates the second output correctly
when the second algorithm is executed by the second

processing unit even if the certification trail produced

by the first algorithm when the first algorithm is exe-

cuted by the first processing unit is incorrect.
I0. A computer system as described in claim 9

wherein the mechanism forcomparing isa comparttor.

5 ll.An apparatusasdescribedinclaim I0 wherein the
second algorithm isderived from the firstalgorithm.

12. A method for achievingfaulttolerancein a cen-

tralprocessing unit comprising the steps of:
executing a fast algorithm in the central processing

10 unit on input so that • first output and a certifica-

tiontrailire produced;
executing a lecond algorithm in the central process-

ing unit on the input and on the certification trail so
that a ta_¢.ond output is produced, said second algo-

l5 rithm having a faster execution time thaa the fast
algorithm fora given input;

comparing the first and second outputs such that aa
error result is produced if the first and second out-
puts are ant the tame.

20 13. A method as deacribed in claim 12 wherein the

second algorithm generates the m_cond output correctly
when the second algorithmisexecuted by the process.
ing unit even if the certificationtrailproduced by the

first algorithm when it is executed by the processing
25 unit is incorrect.

14. A method as described in claim 13 wherein the

second algorithmisderived from the first algorithm.

15.A computer comprising:

g memory,
• central proc_essing unit in communication with the

memory.
• first input port in communication with the memory

and the central processing unit,
• fast algorithm clis]_d in the memory, said first

35 algorithm produces a first output and • certifica-

tion trail based on input received by the input port
when the input is executed by the central process.
ing unit;

a second algorithm disposed in the memory, s.aid
40 second algorithm produces a second output based

on the input and on at least a portion of the certifi-
cation trail when the second algorithm is executed
by the central processing unit, said second algo-
rithm having a faster execution time than the first

45 algorithm for a given input;and
a mechanism for comparing thefirstand second out-

putssuch thatan errorresult is produced ifthe first

and second outputs are not the same.
16. A computer as descn'bed in claim 15 wherein the

50 tecond algorithm generates the second output correctly
when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
fast algorithm when the first algorithm i$ executed by
the processing unit is incorrect.

55 17. A computer as descn'bed in claim 16 wherein the
mechanism for comparing is a comparator.

" 18. An apparatus as described in cLaim IS wherein the
second algorithm is derived from the first algorithm.
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Using Certification Trails to Achieve Software Fault Tolerance

Abstract

Gregory F. Sullivan z

Gerald M. Masson=

Dept• of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

We introduce a conceptually novel and powerful tech-

nique to achieve fault tolerance in hardware and soft-

ware systems. When used for software fault tolerance,

this new technique uses time and software redundancy

and can be outlined as follows. In the initial phase,

a program is run to solve a problem and store the re-

sult.In addition,thisprogram leavesbehind a trailof

data which we calla cerflficationtrail.In the second

phase, another program isrun which solvesthe origi-

nal problem again. This program, however, has access

to tile certification trail IeR by the first program. Be-

cause of tile availability of the certification trail, the

second phase can be performed by a less complex pro-

gram and can execute more quickly. In the final phase,

the two results are compared and if they agree the re-

suits are accepted as correct; otherwise an error is indi-

cated. An essential aspect of this approach is that the

second program must always generate either an error

indication or a correct output even when the certifica-

tion trail it receives from the first program is incorrect.

We formalize the certification trail approach to fault

tolerance and illustrate it by applying it to the funda-

mental pr,,blem of finding a minimum spanning tree.

We discuss cases in which the second phase can be

run concurrently with the first and act as a monitor.

We compare the certification trail approach to other

approaches to fault tolerance. Because of space lim-

itations we have ommited examples of our technique

applied to the Huff.man tree, and convex hull problems.

These can be found in the full version of this paper.

1 Introduction

In this paper we introduce a novel and powerful tech-

nique for achieving fault tolerance in systems. Al-

though applicable to both hardware and software, we

restrict our discussion of this technique in the follow-

ing to software fault tolerance. To explain our new

! R.esetrch partially supported by NSF Grants CCR-$910569

tad CCR-8908092.

=Research par|ally supported by NASA Grant NSG 1442.

technique for software fault tolerance, we will first dls-

cuss a simpler fault tolerant software method• In this

method the specification of a problem is given and an

algorithm to solve it is constructed. This algorithm is

executed on an input and the output is stored. Next,

the same algorithm is executed again on the same in-

put and the output is compared to tile earlier output.

If the outputs differ then an error is indicated, oth-

erwise the output is accepted as correct. This soft-

ware fault tolerance method requires additional time,

so called time redundancy [14, 22]; however, it requires

no additional software. It is particularly valuable for

detecting errors caused by transient fault phenomena.
If such faults cause an error during onty one of the ex-

ecutions then either the error will be detected or the

output will be correct.

A variation of the above method uses two separate

algorithms, one for each execution, which have been

written independently based on the problem specifica-

tion. This technique, called N-version programming[8,

4] (in this case N=2), allows for the detection of errors

caused by some faults in the software in addition to

those caused by transient hardware faults and utilizes

both time and software redundancy. Errors caused

by software faults are detected whenever the indepen-

dently written programs do not generate coincident

errors.

The technique we will describe is designed to achieve

similar types of error detection capabilities but expend

fewer resources. The central idea, as illustrated in Fig-

ure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail.

This data is chosen so that it can allow the the sec-

ond algorithm to execute more quickly and/or have a

simpler structure than tile first algorithm. As above,

the outputs of the ,wo exit.lions are r,qUl)nr,'d and

are considered correct only if they agref'. Not.. how-

ever, we must be careful in defining this method or

else its error detection capability .fight be red.ced

by the introduction of data dependency between tile

two algori:hm executio.s. For example, suppose the

first algorithm execution contains a error which causes

an incorrect output and an incorrect trail of data to

CH 2877-_23/$01.00- 1990 IEEE 423
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Figure 1: Certification trail method.

be generated. Further suppose that no error occurs

during the execution of the second algorithm. It still

appears possible that the execution of the second al-

gorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output

given by the execution of the first algorithm. Intu-

Rive]y, the second execution would be "fooled" by the

data left behind by the first execution. The definitions

we give below .'.xclude this possibility. They demand

that the second execution either generates a correct

answer or signals the fact that an error has been de-

tected in thedata trail. Finally, it should be noted that

in Figure 1 both executions can signal an error. These

errors would include run-tlme errors such as divide.by-

sero or non-terminating computation. In addition the

second execution can signal error due to an incorrect
certification trail.

2 Formal Definition of a Certi-

fication Trail

In this section we will give a formal definition of a

certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formalised as a rela-

tion (that is, a set of ordered pairs). Let D be the

domain (that is, the set of inputs) of the relation P

and let S be the range (that is, the set of solutions)

for the problem. We say an algorithm A solves a prob-

lem P iff for all d E D when d is input to A then an

• E S is output such that (d,s) E P.

Definition 2.2 Let P : D -, $ be a problem. Let

T be the set of certificclion trails. A solution to this

problem using a cerli_cation trail consists of two func-

tions FI and F2 with the following domains and ranges

424

F1:D--'S×Tand F2:D×T'-'SU{error}. The

functions must satisfy the foUowing two properties:

(1) for all d E D there exists • E S and
there exists t E T such that

Fz(d) = (',0 and F2(d,t) =, and (d,,) _ p

(2) for all d E D and for all _ E T

either (F=(d, _) = s and (d, s) E P) or

= error.

The definitions above assure that the error detec-

tion capability of the certification trail approach is

comparable to that obtained with the simple time re-

dundancy approach discussed earlier. That is, if tran-

sient hardware faults occur during only one of the ex-

ecutions then either an error will be detected or the

output will be correct. It should be further noted,

however, the examples to be considered will indicate

that this new approach can also save overall execution

time.

The certification trail approach also allows for the

detection of faults in software. As in 2-version pro-

gramming, separate teams can write the algorithms for
the first and second executions. Note that the speci-

fication now must include precise information describ-

ing the generation and use of the certification trail.
Because of the additional data available to the sec-

ond execution, the specifications of the two phases

can be very different; sin_arly, the two algorithms

used to implement the phases ran be very different.

This is illustrated by the convex hull example in the

full paper. Alternatively, the two algorithms can be

very similar, differing only in data structure manipu-

lations. This is illustrated by the minimum spanning

tree example considered later. When significantly dif-

ferent algorithms are used, the probability that both

algorithms will contain or be affected by faults which

generate matching errors should be reduced. When

very similar algorithms are used it is sometimes pos-

sible to save programming effort by sharing program

code. While this reduces the ability to detect errors

in the software it does not change the ability to detect

transient hardware errors as discussed earlier.

Throughout this section we have assumed that our

method is implemented with software; however, it is

clearly possible to hnplement the certification trail tech-

nique by using dedicated hardware. It is also possible

to generalize the basic two-lard hierarchy of the cer-

tification trail approach as illustrated in Figure 1 to

higher levels. Finally, we note that a wide variety of
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approaches to software and hardware fault tolerance

have been proposed which bear resemblances to the

certification trail approach; we contrast our method

to the most closely related ideas. A more comprehen-

sive comparison appears in the full paper.

3 Minimum Spanning Tree Ex-

ample

In this section we illustrate the use of the certification

trail method by applying it to the minimum spanning

tree problem. Because of space limitations we have

ommited other applications, e.g., to the Huff.man tree

and the convex hull problems. It should be stressed

here that we believe the technique has wide applies-

bility and these problems were chosen shnply for illus-
tration.

The minimum spanning tree problem has been ex-

amined extensively in the literature and an historical

survey is given in [II]. Our certification trail approach

is applied to a variant of the Prim/Dijkstrs algorithm

[19, 9] as explicated in [24]. We will begin our dis-

cussion of the application of the certification trail ap-

proach to the minimum spanning tree problem with

some preliminary definitions.

Definition 3.1 A graph G = (V, E) consists of a vet-

tee set V and an edpe set E. An edge is an un-

ordered pair of distinct vertices which we notate as,

for example, iv, u,], and we say v is adjacent to w. A

p_th in a graph from _1 to v_ is a sequence of ver-

tices lh, t's,..., va such that [t'i,v_+l] is an edge for

i E {I ..... k- 1}. A path is a cycle it"k > I and

1'1 = I,_. An acyclic graph is a graph which contains

no cycles. A connected graph is a graph such that for

all pals of vertices v,w there is a path from v to w. A

tree is an acyclic and connected graph.

Definition 3.2 Let O = (V, E) be a graph and let w

be a positive rational valued function defined on E.

A subtree of G is a tree, T(V', E'), with V' C V and

E' C E. We say T spans V' and V e is spanned by

T. If V' = V then we say T is a spanning tree of G'

The weight of this tree is _"_e_._, u,(e). A minimum
spanning tree is a spanning tree of minimum weight.

3.0.1 Data structures and supported opera-

tions

Before we discuss the minimum spanning tree sago-

rithm, we must describe the properties of the principle

data structure that are required. Since many different

data structures can be used to implement the sago-

rithm, we initially describe abstractly the data that

can be stored by the data structure and the operations

that can be used to manipulate this data. The data

consists of a set of ordered pairs. The first element in

these ordered pairs is referred to as the item number

and the second element is called the key value. Or-

dered pairs may be added and removed from the set;

however, at all times, the item nmnbers of distinct or-

dered pairs must be distinct. It is possible, though,

for multiple ordered pairs to have the same key value.

In this paper the item numbers are integers between I

and n, inclusive. Our default convention is that i is an

item number, k is a key value and h is a set of ordered

pairs. K total ordering on the pairs of a set can be

defined lexicographicsaly as foUows: (i, k) < (i _, h') i_

h < k' or (h = h _ and i < i'). Our data structure

should support a subset of the following operations.

member(i, h) returns a boolean value of true if h con-

rains an ordered pair with item number i, other-
wise returns false.

insert(i, k, h) adds the ordered pair (i, k) to the set h.

delete(i, h) deletes the unique ordered pair with item
number i from h.

chungekey(i,k,h ) is executed only when there is an

ordered pair with item number i in h. This pair

is replaced by (i, k).

deletemin(h) returns the ordered pair which is smsal-

eat according to the total order defined above

and deletes this pair. If h is the empty set then

the token "empty" is returned.

predecessor(i,h) returns the item number of the or-

dered pair which immediately i_reced_ the pair

with item number i in the total orcl*-r, if there

is no predecessor then the token "smallest" is

returned.

Many different types and combinations of data struc-

tures can be used to support these operations effi-

ciently. In our case, we will actually use two different

data structure methods to support these operations.

a25
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One method will be used in the first execution of the

algorithm and another, faster and simpler, method will
be used i. the second execution. The second method

relies on a trail of data which is output b)' the first

execution.

3.0.2 h:[NSPAN alg rithm

Before discussing p:ecise implementation details for

these methods we present the overall algorithm used

in both executions. Pidgin code for this algorithm ap-

pears below. 1, addition, Figure 2 illustrates th_ exe-

cution of the algorithm on a sample graph anti the ta-

ble below records the data structure operations the al-

gorithm must perform when run on the sample graph.

The first column of the table gives Ihe operations ex-

cept member and with the parameter h dropped to

reduce clutter. The second column gives the evolving

contents of h. The third column records the ordered

pair deleted by the delctemin operation. The fo_rth

column records the certification trail corresponding to

these operations and is further discussed below.

The algorithm uses a "greedy" method to "grow _

a minimum spanning tree. The algorithm starts by

choosing an arbitrary vertex from which to grow the

tree. During each iteration of the algorithm a new

edge is added to the tree being constructed. Thus, the

set of vertices spanned by the tree increases by exactly

one vertex for each iteration. The edge which is added

to the tree is the one with the smallest weight. Fig-

ure 2 shows this process in action. Figure 2(a} shows

the input graph, Figures 2(b) through 2(el show sev-

eral stages of the tree growth and Figure 2If ) shows

the final output of the minimum spanning tree. The

solid edges in Figures 2(b) through 2(el represent the

current tree and the dotted edges represent candidates
for addition to the tree.

To efSciently find the edge to add to the current

tree the algorithm uses the data structure operations
described above. As soon as a vertex , say v, is ad-

jacent to some vertex which is currently spanned it is

inserted in the set h. The key value for v is the weight

of the minimum weight edge between v and some ver-

tex spanned by the current tree. The array element

prefer(_,) is used to keep track of this minimum weight

edge. As the tree grows, information is updated b.v op-

erations such as insert(i, k, h) and changekey(i, k, h).

The delcternin(h) operation is used to select the next

vertex to add to the span of the curren: tree. Note,

the algorithm does not explicitly keep a set of edges

(
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Fig, re 2: Example for minimum spanning tree algo-
rithm.

representing the current tree. Implicitly, however, if

(v, 1:) i.'. returned by dcieLernin then prefer{v) is added
to the current tree.

3.0.3 First execution of MINSPAN

In the first execution of the algorithm, Ihe I_IINSPAN

code is used and the principle data structure is imple-
mented with a balanced search tree such as an AVL

tree [1], a red-black tree [12], or a E-tree [5]. h, addi-
tion, an array of pointers indexed from 1 to n is used.

The balanced search tree stores the ordered pairs in h
and is based on the total orde: described earlier. The

array of pointers is il_]tially all nil. For each ite,n i,

the ith pointer of the array is used to point to the lo-
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Algorithm MINSPAN(G, weight)

Input: Connected graph G - (It, E) where V - {1,..., n}

with edge weights.

Output: Spanning tree of (7 which has minimum weight
1 CHOOSE root E V

2 FOR ALL u E V, key(u) := oo END FOR

3 It := e; v := root

4 WHILE v @ empty DO

5 key(v) := -oo

6 FOR EACH [v, .,]E £ DO

7 IF weight([r, w]) < key(w) THEN

8 key(w) := weight(iv, u,]); prefer(w) := iv, w]

9 IF member(u,, h) THEN changekey(w, key(w), h)

I0 ELSE insert(w, key(w), h) END IF
II END IF

12 END FOR

1.3 (v,k) := deletemin(h)
14 END WHILE

15 FOR ALL u E V - {root}, OUTPUT(prefer(u))
END MINSPAN

Figure 3: Code for MINSPAN Algorithm

Opetatiol: Set of Ordered Pairs Trail

insert(2,200) (2,200) smallest

insert(6,500) (2,200),(6,500) 2

deletemin (6,500)

insert(3,800) (6,500),(3,$00) 6

changekey(6,450) (6,450),(3,800) smallest

insert(7,505) (6,450),(7,505),(3,800) 6

delctemin (7,505),(3,800)

insert(S,250) (5,250),(7,505),(3,800) smallest

changekep(7,495) (5,250),(7,495),(3,800) 5

deletemin (7,495),(3,800)

changckey(3,350) (3,350),(7,49S) smallest

ir_ert(4,TO0) (3,350),(7,495),(4,700) 7

dcletemin (7,495),(4,700)

changekey(4,650) (7,495),(4,650) T

deletemin (4,650)
deletemin

deletemin

Table 1: Data structure operations and certification
trail for MINSPAN

OF P_.-R Ob__rry
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cation of the ordered pair with item number i in the

balanced search tree. If there is no such ordered pair

in the tree then the ith pointer is till. This array allows

rapid execution of operations such as member(i, h) and
delete(i, h).

The certification trail is generated during the first
execution as follows: When CHOOSE root E g is exe-

cuted in the first step, the vertex which is chosen is out-

put. Also, each time insert(i, k, h) or changekey( i, k, h)

are executed, predecessor(i, h) is executed afterwards,
and the answer returned is output. This is illustrated

in cohmn labeled "Trail" in the table above.

3.0.4 Second execution of MINSPAN

The second execution of the algorithm also uses the
MINSPAN code; however, the C.HOOSE construct and

the data structure operations are implemented differ-

ently than in the first execution. The CHOOSE is

performed by simply reading the first element of the

certification trail. This guarantees the same choice of

a starting vertex is made in both executions. Figure 4
depicts the principle data structure used which we call

an indexed linked list. The array is indexed from 1 to n

and contains pointers to a singly linked llst which rep-
resents the current contents of h. Each element in the

list stores an ordered pair in h except the head of the

list which contains the special ordered pair (0,-INF).
The list is organized such that a travetsal front the

head gives the sorted ordering of the current contents

of h from smallest to largest. The ith element of the

array points to the node containing the ordered pair
with the item number i if it is present in h; otherwise,

the pointer is nil. The 0th element of the array points

to the node containing (0,-INF). Initially, the array
contains nil pointers except the 0th element. We now

show how to implement the data structure operations.

To perform insert( i, k, h), it is necessary to read

the next value in the certification trail. This value,

say j, is the item number of the ordered pair which is
the predecessor of (i,k) in the current contents of h.

A new linked list node is allocated a.d the trail infor-

mation is used to insert the node inlo ,I,_ data _tr,,c-

ture. Specifically, the jth array pointer is traversed

to ._ node in the linked list. say ]'. (If j = "smallest"

then the 0th array pointer is traver._ed.) The new node "

is inserted in the list j,tst after node ]" and before the

next node in the linked list (if there is one). The data

field in the new node is set to (i, k) and the ith pointer

of the array is set to point to the new node. Figure
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4 shows the il,sertion of (7,505) into tile data struc-

ture given that the certification trail value is G. Figure

3(a) is before the insertion and Figure 3(b) is after the
insertion.

3Arhen the inserf operation is performed, some checks

must be conducted. First, the ith array pointer must

be nil before the operation is performed. Second, the

sorted order of the pairs stored in the linked list must

be preserved after tile operation. That is, if (i', k') is

stored in the node before (i,k) in the linked list and

(i',h") is stored after (i,k), then (i',k') < (i,k) <

(i", k') must hold in the total order. If either of these

cl, ecks fails then execution halts and "error" is output.

To perform delete(i, h) the ith array pointer is tra-
versed and the node found is deleted from the linked

list. Host, the ith array pointer is set to nil. Figure
4 shows the deletion of item n::mber 7 if one consid-

ers Figure 3(a) as depicting the data structure before

the operation and Figure 3(b) depicting it afterwards.

When the delete operatioz: is performed one check is

made. If the ith array pointer is nil before the opera-

tion then the execution halts and "error" is output.

To perform changekey(i ,k, h) it suffices to perform

delete(i, h) followed by insert(i, k, hr. Note, this means

the next item in the certification trail is read. Also,

the checks associated with both these two operations

a_e performed and the execution halts with "error"

output if any check fails.

To perform deletemin(h) the 0th array pointer is
traversed, to the head of the list and the next node

in the list is accessed. If there is no such node then

"empty" is returned and the operation is complete.

Otherwise, suppose the node is Y and suppose it con-

tains the ordered pair (i, k), then t4e node ]" is deleted

from the list, the ith array pointer is set to nil, and

(i, h) is returned.

Lastly, to perform member(i, h) the ith array pointer

is examined. If it is nil then false is returned, other-

wise, true is returned. The predecessor(i, h) operation
is not used in the second execution.

This completes the description of the second exe-
cution. To show that what we have described is a cor-

rect implementation of the certification trail method

requires a proof. The proof has several parts of varying

diflSculty. First, one must show that if the first execu-

tion is fault-free then it outputs a minimum spanning
tree. Second, one must show that if the first and sec-

ond executions are fault-free then they both output

the same luinimum spanning tree. Both these parts of

Figure 4: Example of the data structure used in the
second execution of MIh'SPAN.

the proof are not difficult to show.

The third more subtle part of the proof deals with

the si'_,ation in which only the second exccution is

fault-free. This means an ii,correct certification trail

may be generated in the first execution. In this case,

we must show that the second execution outputs ei-

ther the correct minimum spanning tree o: "error _.

The checks that were described above ],ave been care-

fully designed to assure precisely this property by de-
tecting any errors i.hat would prevent the execution

from gen.-rating the correct output. Because of space
restrictions we will not give the proof here.

3.0.5 Time complexity comparisons ofthe two

executions

In the first execution each data structure operation

can be performed in O(log(n)) time where [vl - n.

There are at most O(m) such operations and O(m)
additional time overhead where IEI = m. Thus, the

first execution can be performed in O(,nlog(n)) We

note that this algorithm does not achieve the fastest

known asymptotic time complexity which appears in

[10]. llowever, the algorithnl we have presented has a

significant! ._maller constant of proportlo,,alily which

makes it competitive for reasonably sized graphs. In

addition, it provides us with a relatively simple and
illustrative example of the use of a certification trail.

It should be mentioned that we have developed a more

complex certification trail solution for an as.wnptoti-

tally faster minimum spanning tree algorithm which
uses fibonacciheaps.

42s
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In the second execution each data structure oper-

ation can be performed in 0(I). There are still at

most O(m) such operations and O(m) additional thn¢

overhead. Hence, tile second execution can be per-

formed in O(m) time. In other words, because of the

availability of the certification trail, the second ezecu-

tion is performed in linear lime. There are no known

O(m) time algorithms for the minimum spanning tree

problem. Koml6s was able to show that O(m) com-

parisons suffice to find the minimum spanning tree.

However, there is no known O(m) time algorithm to

actually find and perform these comparisons. Even

tlle related "verification" problem has no known lln-

ear time solution. In the verification problem the input

consists of an edge weighted graph and a subtree. The

ouput is "yes" if the subtree is the minimum spanning

tree and "no" otherwise. The best known algorithm

;'or this problem was created by Tar.jan [25] and has

the nonlinear time complexity of O(._(rrt, n)), where

•_ (m, n) is a functional inverse of Ackerman's function.
The fact that the data in a certification trail enables

a minimum spanning tree to be found in linear time

is, we believe, intriguing, significant, and indicative of

the great promise of the certification trail technique.

3.1 Concurrency of Executions

In some cases, it is possible to start the second execu-
tion before the first execution has terminated. This is

a highly desirable capability when additional hardware

is available to run the second execution (for example,

with multiprocessor machines, or machines with co-

processors or hardware monitors).

In the case of the minimum spanning tree prob-

lem, the two executions can be run concurrently. It

is only necessary for the second execution to read the

certification trail as it is generated - one item number

at a time. Thus there is a slight time lag in the sec-

ond execution. This potential for concurrecy has been

found in other problems we have examined, e.g., the

Huffman tree problem.

An additional opport,nity for overlapping execu-

tion occurs when the system has a dedicated co*npara-

tor. In this case it is somethnes possible for the two

executions to send there output to the comparator as

they generate it. For example, this can be done in the

minimum spanning tree problem where the edges of

the tree can be sent individually as they are discov-
ered by both executions.

4 Comparison of Techniques

The certification trail approach, whether implemented

in hardware or software or some combination thereof,

has resemblances with other fault tolerant techniques

that have been previously proposed and examined, but

in each case there are significant and fundamental dis-

tinctions. These distinctions are primarily related to

the generation and character of the certification trail

and the manner in which the secondary algorithm or

system uses the certification trail to indicate whether

the execution of the primary system or algorithm was

in error and/or to produce an output to be compared

with that of the primary system.

To begin, we compare the certification trail up-

proach to N-version programming[8, 4]. This approach

specifies that N different implementations of an al-

gorithm be independently executed with subsequent

comparison of the resulting N outputs. There is no

relationship among the executions of the different ver-

sions of the algorithms other than they all use the

same input; each algorithm is executed independently

without any information about the execution of the

other algorithms. In marked contrast, the certification

trail approach allows the primary system to generate a

trail of information while executing its algorithm thc, t
is critical to the secondary system's execution of its

algorithm. In eft'oct, N-version programming can be

thought of relative to the certification trail approach

as the employment of a null trail.

k software/hardware fault tolerance technique called

the recovery block approach [20, 2, 17] uses acceptance

tests and alternative procedures to produce what is to

be regarded as a correct output from a program. When

using recovery blocks, a program is viewed as a being

structured into blocks of operations which after exe-

cution yield outputs which can be tested in some in-

formal sense for correctness. The rigor, completeness,

and nature of the acceptance test is left to the program

designer [2]. Indeed, formal methodologies for the def-

inition and generation of acceptance tests have thus

far not been fully established. Regardless. the certifi-
cation trail notion of a _c,Jndarv _v_tcm fl, at r_ceives

the same input as the primary ._ystem and executes

an algorithm that takes advantage of this trail to eltS-

ciently produce the correct output and/or to indicate

that the execution of the first algorith,n **'as correct

does not fall into the category of an acceptance test.

Recently Blum and Kannan[7] have defined what

they call a program checker. A program checker is

_2q O_INAL PA_E
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an algorithm which checks the output of another algo-

rithm for correctness and tiros it is similar to an accep-

tance test in a recovery block. An example of a pro-

gram checker is tile algorithm developed by Tarjan[25]

which takes as input a graph and a supposed mini-

mum spanning tree and indicates whether or not the

tree actually is a mininmm spanning tree. The Blum

and Kannan checker is actually more genera] than this

because it is allowed to be probabilistic in a care-

fully specified way. There are two main differences

between this approach and the certification trail ap-

proach. First, a program checker may call the algo-
rithm it is checking a polynomial number of times. In

our approach the algorithm being checked is run once.

Second, the checker is designed to work for a prob-

lem and not a specific algorithm. That is, the checker

design is based on the input/output ipecification of a

problem. The certification trail approach is explicitly

algorithm oriented. In other words, a specific algo-

rithm for a problem is modified to output a certifi-

cation trail. This trail sometimes allows the second

execution to be faster than any known program check-
ers for the problem. This is the case for the minimum

spanning tree problem.

Space limitations preclude comparisons with the

following other relevant techniques: watchdog proces-

sors [18, fi], algorithm based fault tolerance [13], exe-

cutable assertions [3].

5 Concluding Discussion

We have presented a new, powerful fault tolerant com-

puting technique called the certification trail approach.

Our description of this technique has been only in

terms of applications to software fault tolerance, but

the certification trail approach can also be implemented
with hardware. We have illustrated the certification

trail technique by applying it to a minimum spanning

tree algorithm. The full version of this paper includes

applications to a Huff.man tree algorithm, and a con-

vex hull algorithm. It should be understood that the

approach is in no way limited to these algorithms. We

believe that our consideration of these algorithms gives

insight into the significance and desirability of the ap-

proach. We have found several other algorithms to

which our techniques apply including an algorithm for

the shortest path problem and we believe the technique
will be widely applicable. We have also examined the

general problem of "certifying" data structure opera-

4.10

tions as discussed above and have proven results for

additional data structures. These results ate impor.

rant because they allow the certification trail approach

to be applied to any algorithm which uses one of these
data structures.

In the problem discussed an asymptotic speed up
wax achieved between the first execution and the sec-

ond execution which wa._ greater than any constant

factor."Citenote,however, even ifthe speed up Were

only by a constant factor,it would stillmake sense

to use the techniquebecause execution time would be

saved. We also note that the certification trail tech.

nique can be used in conjunction with other software

fault tolerance techniques. For example, multiph al-

gorithms can be developed which generate and read

multiple (but different) certification trails. Further,
these algorithms could be written by separate teams of

individuals. A general architecture for the interaction

of these algorithms is an important research topic. For

example, a "cascade" of algorithms numbered from 1

to N could be designed such that algorithm i sends

a certification trail to i + 1 which allows i + 1 to run

faster than i. When errors are detected, other ver-

sions of algorithms can be invoked which may use an

earlier certification trail or ignore it. The ideas devel-

oped in recovery blocks and N-version programming

among others could be used as guidance in exploring
such issues.
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output such that (d, ,) E P.

Definition 2.2 Let P : D -. S be a problem. A solu-
tion to this problem using a certlj_cafion trail consists
of two functions FI and F2 with the following domahs
and ranges Ft : D --. S × T and F2 : D × T --,
S U {error}. T is the set of cergQ_catlon trails. The
functions must satisfy the following two properties:

(I) for all d E D there exists • E S and
there exists t E T such that

_'z(d) = (•,t) and F,(d,t) = o and (d,,) _ P
(2) for an d E D and for all t E T

either (F,(d, =, and (d,,) P) or
F,(d, t) = error.

We also requite that FI and F3 be implemented
so that they map elements which are not in their re-
spective domains to the error symbol. The definitions
above assure that the error-detectlon capability of the
certification-trail approach is sim_ar to that obtained
with the simple time-redundancy approach discussed
ca:liar. (That is, if transient hardware faults occur
during only one of the executions then either an er-

ror will be detected or the output will be correct.) It
should be further noted, however, the examples to be
considered will Lndlcate that this new approach can

Save overall execution time.

Observant readers of our earlier paper [11] in which
we introduced the notion of a certification trail might- _:.:'i have

"-----'-- noticed that our certification-trall solution for the
*-:'" _-spanning tree was generalizable. The generallzed
_ _techniqu¢ allows one to generate a certification trail

tot many algorithms which use a balanced binary tree
= " _'" uata structure However, the technique relies on the
_ ¢_cient execution of the predecessor operation and

|__'_ _ae data structures such as heaps cannot execute

_e'_':_ ,de predecessor operation cffidently. The techniques
uescribed in this paper are even more general and pow-

°_A_:'- - The degree of diversity or indevendenc¢ achieved

¢_'i hen • • • .nsmg certificahon trails depends on how they

i

are used. A fuller discussion of this and of the re-

lationship between certification tra_ and other ap-
proaches to software fault tolerance is contained in the

expanded version of [11]. This current paper presents
asymptotic analysis which shows that the certification-
trail approach is desirable even when the overhead of
generating the certification-trall is included. We are
currently working on an experimental analysis of the
method and initial results are quite promising.

3 Answer-Validation Problem for

Abstract Data Types

Otir general approach to applying certification tr_fils

uses the concept of an abstract data type. Some exam-
ples of abstract data types are given later in this paper.
Here we mention some important common properties
and glve s short illustration. Each abstract data type
has a well defined data object or set of data objects,
and each abstract data type has a carefully defined fi-
nite collection of operations that can be performed on
its data object(s). Each operation takes a finite num-
be: of arguments (possibly sero), and some but not
all operations return answers. An example of an ab-
stract data type is a priority queue. The data object
for a priority queue is an ordered pair of the form (i,k)
where i is an item number and k is a key value. A pri-
ority queue has two operations: insert(i,k) and ddmin.
The insert operation has two arguments: item number
i and key value k. The insert operation does not return
eda answer. The ddmin operation has no arguments,
but it does return an answer. The precise semantics

of these operations are given later in this paper.

For each abstract data type we define an ansuJer-
validation problem. Intuitively, the answer vaiidation
problem consists of checking the correctness of s se-
quence of supposed answers to a sequence of opera-
tions performed on the abstract data type. More for-
really, the input to the answer-validation problem is
s sequence of operations on the abstract data type
together with the arguments of each operation. In ad-
dition, the sequence contains the supposed answers for
each of the operations which return answers. In par-
ticular, each supposed answer is paired with the oper-
ation that is supposed to return it. Examples of such
inputs are given in the columns labelled "Operation _
and "Answer" of table I and table 2.

The output for the answer-vaiidation problem is
the word "correct" if the answers given in the input
match the answers that would be generated by actually
performing the operations. The output is the word
"incorrect" if the answers do not match. It is also

useful to allow the output word to say "ill-formed'.
This output is us¢cl if the sequence of operations is U]-

formed, ¢.g., an operation has too many arguments or
an argument refers to an inappropriate object.

Im,AC_ BLANK NOT FILMK_,
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Certification Trails for Data Structures
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Certification trails are s recently introduced and promis-

ing approach to fault detection and fault tolerance [11}.
In this paper, we significantlygeneralize the applica-
bility of the certifcation trail technique. Previously,
certification trails had to be customized to each algo-

rithm application, but here we develop trails appro-
priate to w;de classes of algorithms. These certifica-
tion trails are based on common data-structure oper-
ations such as those carried out using balanced binary

trees and heaps. Any algorithm using these sets of
operations can therefore employ the certification trail
method to achieve software faulttolerance.To exem-

plifythe scope of the generalizationofthecertification
trailtechnique plovlded inthispaper,constructionsof

trailsfor abstract data types such as priorityqueues
and union-find structureswillbe given. These trails

are applicableto any data-structureimplementation of
the abstractdata type. ItwillLlsobe shown thatthese

ideas lead naturallyto monitors fordata-structureop-
erations.

Keywords: Software fault tolerance, error monitor-
ing, certification trails, design diversity, data struc-
tures.

1 Introduction

In this paper we significantly generalize the novel and
powerful certification-trail technique for achieving fault
tolerance in systems that was introducedin [11]. Al-
though applicable to both hardware and software,we
restrictour discussionof the certifcation-tral]tech-

nique in the followingto softwarefaulttolerance.To

explain the essence of the certification-trailtechnique
for software fault tolerance, we wR] first discuss a sim-
pler fault-tolerant software method. In this method
the specification of a problem is given and an algo-
rithm to solve it is constructed. This algorithm is ex-
ecuted on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
If the outputs clh_er then an error is indicated, other-
wise the output is accepted as correct. This software
fault tolerance method requites additional time, so-

called time redundancy [8, 10]; however, it requires no

a Re=earth partJe_y supported by NSF Grn.nt. CCR-8910569
and CCR-89o8o92.

=Research ps.rti_l]y supported by NASA Grant NSG 1442.

additional software. It is particularly valuable for de-

tecting errors caused by transient fault phenomena. If
such faults cause an error during only one of the ex.
ecutions then either the error will be detected or the

output will be correct. The second possibility, of unde-
tected faults, occurs when the output of the execution
is unaffected by the hults.

The certification-trail technique is designed to ob-

tain similar types of error-detection capabilities but
expend fewer resources. The central idea, as illus.
trated in Figure 1, is to modify the first algorithm
so that it leaves behind a trail of data which we call a
certification trail. This data is chosen so that it can al-
low the the second algorithm to execute more quickly
and/or have a simpler structure than the first algo-
rithm. As above, the outputs of the two executions
are compared and are considered correct only if the)'
agree. Note, however, we must be careful in defining
this method or else its error detection capability might

be reduced by the introduction of data dependency
between the two algorithm executions. For example,

suppose the first algorithm execution contains an error
which causes an incorrect output and an incorrect tr_dl

of data to be generated. Further suppose that no erro:
occurs during the execution of the second algorithm. It
still appears possible that the execution of the second
algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be "fooled" by the
data left behind by the first execution. The definitions

we give below exclude this possibility. They demand
that the second execution either generate a correct an-

swer or signal that an error has beer, detected in the
data trail.

'3
,/d

Formal Definition of a Certi-

fication Trail

In this section we wil] give a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formalized as a rela-
tion, i.e., a set of ordered pairs. Let D be the domain

(that is, the set of inputs) of the relation P and let
S be the range (that is, the set of solutions) for the
problem. We say an algorithm A solves a problem P
iff for all d E D when d is input to A then an s E S is

24O
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The answer-validation problem is siml]ar to the
idea of an acceptance test which is used in the recovery-

block approach [@,2] to software fault tolerance. The
main difference is that an answer-validation problem is

dependent upon a sequence of answers, not just an in-
dividual answer. Hence, if an incorrect answer appears
in the sequence, it may not be detected immediately.
]t is _uaranteed, however, that an incorrect answer
will b< detected at some point during the processing
of the entire sequence. By allowing for this latency in
detection, it is possible to create a much more e_cient
procedure for solving the answer-vaLidation problem.

In thispaper we shall solve the validation problem
for two abstract data types. In the full version of this
paper we solve the snswer-validation problem for more
general data types [12].

The most important aspect of the answer-valldation
problem is that it is often possible to check the cor-
rectness of the answers to a sequence of operations
much more quickly than actually calculating what the
answers should be from scratch. In other words, the
answer-validation problem has a smaller time complex-

ity than the original abstract-data-type problem. For
example, to calculate the answers to a sequence of n
priority-queue operations takes fl(n log(n)) time, how-
ever it is possible to check the correctness of the an-
swers in only O(n) time. This speedup is very useful

in fault-detection applications.

It is possible to run an answer-validation algorithm
for some abstract data type concurrently with some
algorithm which uses the abstract data type. The
answer-validation algorithm could act as a monitor
making sure that all interactions with the abstract
data type are handled correctly. This is valuable be-
cause many algorithms spend a large fraction of thdr
time operating on abstract data types. Note, the over-
head of this monitor is less than the overhead of ac-

tuall.v performing the data-type operations a second
time.

One possible application of the answer-validation
problem occurs when it is used in conjunction with a
repairable data structure which allows for repair but
does not automaticaUy attempt to d-_tect faults [161.
Suppose an abstract data type is implemented with
a repairable data structure. One can use an answer-
validation procedure to detect errors in the answers
generated b v the abstract data type. When an er-
ror is detected, a repair of the data structure can be
attempted. In some cases, recovery and continued ex-
ecution will be possible.

It, the next section, we will show how to create cer-
ti£cation trails for programs which use abstract data
types when those data types have emcient solutions
for their answer-validation problems.

4 Schema for using Certification
Trails

Suppose that we have developed an emcient solution to
the answer-validation problem for some abstract dat_
ty:_o. B.v efficient we mean the time complexity of
tl,_ answer-validation problem is smaller tl,an the time
complexity of the origins] abstract-data-type problem.
Further, suppose that we wish to run an algorithm,
say A, which uses that abstract data type. To appl.v
the certification trail method we can use the foUowing
schema to yield the two executions:

First Execution:

Execute algorithm A.
Each time an abs'.ract-data-type operation is performe:.,
append to the certification trail the identity of the op-
eration, the arguments and the answer.

Second execution:

Phase One:
Validate the correctness of the operations and sup-

posed answers give.', in the certification trail. If the
validation returns 'qncorrect" or "ill-formed" then out-

put "error" and stop. Otherwise, continue.

Phase Two:

Execute algorithm A.
Each time an abstract-data-type operation is performed,
read the next entry in the certification trail. Make sut_
that the operation a_d the arguments in the certifica-
tion trail agree wi'h those requested in the algorithm.
If not output "error" and stop. Otherwis.-, use the
answer given in the certification trail and continue.

In the final step the outputs from the two execu.
tions are compared and the output is accepted or an er-
ror is signaled. This schema car. yield execution times
which are significantly faster than the execution time
obtained by running algorithm A twice, yet these two

method_ give similar fault detection capabi_ties. That
i_, if transienl hardware halts occur during only one
of the executions then either an error will be d-.tected
or the output will be correct, lqo_e, the first execution
can be slower than a simple execution of algorithm
A since it must output a certification trail. However,
the second execution can be significantly faster than

a simple execution of the algorithm since the interac-
tions with the abstract data t vpe take less time overall
Th; _-t effect can be a major speedup.

Suppose an algorithm uses multiple abstrac! data
types and suppose there are ef_cient answer-validation
a]gorithms for each of these abstract data types. ]' is
eas.v to see how our method generalize.'.. We can leave
behind a generalized certification trail which consis:s
of a separate certificatior trail for each of the abstract
c'ata types. The effect on the speedup of the second
execution will be cumulative.
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Figure 2: Unloa Tree and with Find Edges

5 Answer Validation for Disjoint-
Set Union

As our first example we will discuss the disjolnt-set
union problem. Thls problem concerns s dynamic col-
lection of sets in which pairs of sets can be combi.ned
to yield new sets. The underlying universe of set el-
ements consists of the integers f.tom I to n induslve.
Also, the universe of set names consists of the integers
fzom I to n inclusive. There ere three operations that
can be performed:

create(A,x) creates a singleton set named A which
contains element x. Since sets must be disjoint we
require that x not already be in some set.

union(A,B) creates a new set which is the union
of the sets named A and B. This new set is caned A

and the set named B becomes undefined. It is required
that the sets named A and B are originally defined and
a:e disjoint.

find(x) returns the name of the set which contains
element x. It is required that x be a member of some
Unique set.

If an operation violates one of the requirements
described above then it is considered to be in-formed.

Aho, if an operation has the wrong number or type of
arguments it is considered to be Ul-formed.

In table 1 we give an example of a sequence of
dlsjoint-set-union operations together with the answers
for find operations. In addition, the colection of sets
is depicted as it is changed by the operations. For tim-
piicity, in this exampleeach set name corresponds to
the integer originally contained in the set when it is

Created. Sets are listed by first giving the name of the
set followed by a colon and then the contents of the
let.

The disjoint-set-union problem is a dassl¢ problem
_hich has many applications [4] such as the off-line

Operation Answer Status of sets

crcate(l,l) I:II 1er.te(2,2) 1:1
union(I,2) 1:{1,2}
find(2) 1
crcate(S,S) 1:{1,2),3:(3}
ereatc(4,4) 1:(1,2),3:{3),4:{4}
ereate(5,5) 1 :{ 1,2),3:{3),4:{4},5:{5}
union(5,3) 1:{1,2},4:{4},6:{3,5}
union!S,1 ) 4:{4},5:{1,2,3,5}
find(2) s
find(5) 5
create(6,6) 4:{4},5:{1,2,3,5},6:{6}

union(4,6) 4:{4,6),5:(1,2,3,5}.
create(7,7) 4:{4,6},5:{1,2,3,5},1:{7}
union(4,7) 4:{4,6,7},5:{1,2,3,5}
find(6) 4

Table 1: Sequence of operations for a Disjoint Set
Union

rain problem, connected components, least-common
ancestors, and equivalence of finite automata. Of par-
titular interest is the time-complexity of performing a
sequence of operations. Let us say the total number of
operations is rrh which is assumed to be g_eater than
or equal to n. Recall, n is the number of set elements
and set names.

Tarjan gave the tight upper bound of O(ma(m, n))
[13, 14] for this problem. The a refers to the inverse
of Ackermann's function which is a very slowly grow-
ing function. His solution and earlier solutions used
a path-compression heuristic {15]. Fredman and Saks
gave a lower bound of fl(m,a(m, n)) [5] in a general
cell-probe model Gabow and Tarjan show how to
solve some important special cases of this problem in
O(ra) time [6].

We now consider the answer-validation problem for
the disjoint-set-union data type. We win show that
this problem can be solved in O(m) time where m
is the number of operations. Note, this time com-
plexity is superior to the complexity of actually pet-
forming the sequence of operations as discusscd above.
One method for solving this problem in O(m) time
uses the powerful techniques of Gabow and Tarjan [6}.
However, we shall present a simpler method with a
small constant of proportionality that is tailored to
this problem.

To solve this problem we win build a forest based
on the union operations in the sequence. In addition,
we shall add edges to this forest based on the find
operations. As a final step we win perform a traversal
of the forest and perform appropriate checks. The solid
edges in figure 2 indicate the forest we would build for
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the set of operations given in table 1. The dashed
edges indicate the edger we would add to the forest

based on the find operations.

Algorithm for Answer Validation for Disjoint-
Set Union

Input: sequence of m operations together with argu-
ments and supposed answers for the disjoint-set union
data type.
Output: "correct', _incorrect" or "ill-formed"

Declarations: Type treenMe has fields left and right.

Type treelea]conta_ns a list of pointers such that each
pointer points to a treenode or a treeleaf. Array ac-
tireJet is indexed by set name. Each array element is
a pointer to a treenode or a treeleaf. Array whereiJ is
indexed by an element number. Each array element
is a pointer to a treeleaf. Initially, all pointers are nil
and lists are null.

In the first phase of the algorithm we process each op-
eration as it appears seriall.v using the following rules:

create(A,x): If activeset[A i or whereis[x] are non-nll
then output _il]-formed" and stop. Otherwise, allocate
a treeleaf and set activeset[A] and whereis[x] to the
allocatednode.

union(A,B): Ifactive.set[A]or activeset[B]are nilthen
output "ill-formed"and stop. Otherwise, allocatea

treenode and set left to activeset[A] and right to ac-
tive, crib ]. Next set activeset[A] to the treenode and
set active.set[B] to nil.

find(x) A: (where A is the supposed answer to the
find.) If whereis[x] is nil then output "ill-formed".
Otherwise, whereis[x] points to some treeleaf. Call it
tleaf. If activeset[A_ is nil then output "ill-formed".
Otherwise, activeset[A] points to some treeleaf or treen-
ode. Call it t. Add a pointer to t to the list of pointers
contained in treeleaf.

In the second phase of the algorithm we shah traverse
the structure we have built.

Scan thru the array sctlveset to find non-nl] pointers.
It is not hard to see that each non-nil pointer points
to the root of a tree made up of nodes of type tnode
and tleaf. The tree uses the edges in the left and right
fields of tnode.

For each such tree perform a depth-first search. When-
ever the search reaches a node of type tlea_ traverse
the list of pointers that it contains. Check that each
pointer points to a node which is currently on the stack
which is used to perform the depth-first seard,. This is
equivalent to checking that each pointer in t]eaf points
to a node which is an ancestor of tleaf in the tree.

If some pointer does not point to an ancestor then out-
put "incorrect" and stop. Otherwise, output "correct _'
and stop.

"Flleorem 5.1 The aigorlthra for anpu,er I,alidation of
the d_.,3omt-set.union absteacf data tlIpe i_ correct.

Theorem ,5.2 The ansu, er 1,alidation algorithm for dij.
jmnt set union ha_ a time comple:it1! of O(mJ for pro.
ccJJing a _equcncc of m ope_tions.

We omit these two theorem; which overall are not
difficult to show. We comment on one aspect of in_.
plementation. In the second phase of the answer vali.
dafion algorithm il is necessary to determine if certain
nodes are on the stack during the tree traversal. This
can be done et_iciently as follows: First, each treen.
ode and each treeleaf can be assigned a unique iden.
tifier in the range 1 to m as it is allocated. I_ext, a
boolean vector of size ra indexed by the unique iden.
titqers described above can be allocated. This vector

can be used to keep track of which nodes are on the
stack during tree traversal by turning bits on and of L
This modified tree traversal algorithm still tak_ O(m)
time.

6 Generalized Priority Queue

We now describe a somewhat general abstract data

type. We will solve the answer validation problem for
restricted versions of this data type. The data consists
of a set of ordered pairs. The first element in these or-
dered pairs is referred to as the item number and the
second dement is called the key value. Ordered pairs
may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs
must be distinct. It is possible, though, for multiph
ordered pairs to have the same key value. In this pa-
per the i:cm numbers are integers between 1 and n,
inclusive. Our default convention is that i is an item

number, k is a key value and h i'- a set of ordered pairs.
A total ordering on the pairs of a set can be defined
lexicographically as follows: (i, k) < (i', k') ifl"k < k'
or (k = k' and i < i'). The abstract data types we will
consider support a subset of the following operations.

member(i) returns a boolean value of true if the set
cont,,ins an ordered p_ir with item number i,
otherwise returns false.

insert (i, k) adds the ordered pair (i,k) I,_ the set. We
require that no other pair with item nunlber i be

in the set.

delete(i) deletes the unique ordered pair wit]) i:em
number i from the set. We require that a pair
with item number i be in the set initially.

cha._gekey(i, k) is executed only when there is an or-
dered pair with item number i in the set. This
pair is replaced by (i, k).

244
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T Operation Answer Validation stack

1 insert(6,300)
2 htsert(2,404)
3 insert(3,250)
4 deletemin (3,250) (3,250,4)
5 insert(10,248)
6 h, sert(12,245)
7 insert(4,260)
s deletemm (12,245)(n,245,S),(3,250,4)
9 in,err(13,140)
I0 insert(5,142)
11 de]etemin (13,1407 (13,140,II),(12,245,8),(3,250,4)
12 deletemin (5,142) (5,142,12),(12,245,8),(3,250,4)
13 deletemin (I0,248) (10,248,13),(3,250,4)
14 deletemin (4,260) (4,260,14)

Table 2: Sequence of Priority Queue operations _us-
trating answer vafidation algorithm

deletemin (or de]etemax) returns the ordered pair which
is smallest (or largest) accordln 8 to the total or-
der defined above and deletes this pair. If the
set is empty then the token "empty" is returned.

rain (or max) returns the ordered pair which is small-
eat (or largest) accorcUng to the tots] order de-
fined above. If the set is empty then the token

"empty" is returned.

If an operation violates one of the requirements de-
scribed above then it is considered to be ill-formed.

Also, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

Many different types and combinations ofdata struc-
tures can be used to support different subsets of these
operations efficiently.

7 Answer Validation for Prior-

ity Queue

We will first consider the priority-queue abstract data
type which ,aows only two operations: insert and
deletemin. An example of a sequence of such oper-
ations appears in table 2. Many different data struc-
tures can be used to implement priority queues includ-
ing heaps [17], balanced search trees such as AVL trees
[I], red-black trees [7], or b-trees [3]. It is possible to
process a sequence of O(n) operations in O(nlog(n))
time using the data structures above. Furthermore,
there is a lower bound of N(n log(n)) because it is pos-
sible to sort using a priority queue. Remarkably, the
answer-validation problem can be solved using only
O(n) time, as documented below.

Each operation is time-stamped, i.e., the opera-
tions are assigned integers sequentially starting with
I which is easy to do with a counter. The answer-
validation algorithm uses a stack called deletestack.
The contents of this stack are illustrated in table 2.

The top of the stack is on the left in table 2.
Let us consldet the kinds of tests that an answer-

validation algorithm for a priority queue might per-
form. Suppose (i,k) is the answer to some deletemin
operation. Further, suppose (i',k') was deleted in s
previous deletendn operation. If the priority queue is
correct then either (i,k)>(i',k') or (i',k') was deleted
before (i,k) was inserted. This suggests that the time
of insertion and deletion for elements should be recorded

and the algorithm below does this. Unfortunately, if
an algorithm compares an ordered pair which has been
deleted against all previously deleted ordered pairs
then the algorithm complexity is at least O(m:). To
avoid this the deletestsck is used. The deletestack was

designed to allow many comparisons to be done im-
pllcitly and to reduce the complexity.

Algorithm for Answer Valldation for Priority

Queue

Input: sequence of O(n) operations together with ar-
guments and supposed answers for the priority-queue
data type.
Output: "correct", "incorrect" or 511-formed"

Declarations: Array called inserftime indexed by item
number. Array elements contain either "absent" or
a time-stamp. Array craned keyvalue indexed by item
number. Array elements contain either "absent" or
a key value. Initially, each element in these two at-
rays contains "absent". Stack of ordered triples called
deleteJtack. Each ordered triple has the following form:
first element is an item number, second element is s

key value, and third element is a time-stamp, deletes-
tack is initially empty.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

Let currenttime refer to the time-stamp of the opera-

tion being processed.

insert(i,k): If inscrttime[i]#%bsent" then output "ill-
formed" and stop. Otherwise, let inserttime[i] = cur-
renttime and let keyvalue{i]=k.

deletemin (i.k): (where (i,k) is the supposed a,swer
to the deletemin operation.) If inserttin,e[i]='al)._ent"
or keyvalue[i]_k then output "ill-formed" and stop.

Otherwise, let (i',k') be the item number and key
number of the triple on the top ofdeletestack (if there
is one). Kepeatedly pop the stack until (i,k)<(i',k') or
until deletestack is empty.

If deletestack is empty then push the triple

(i,k,currenttime) onto deletestack. Further, let insert-
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time[i]='absent" and let keyvalue[i]='absent" and pro-
tess the next priority queue operation.

If deletestacl is non-empty then let the top element
be (i',k',deletetime'). If inserttime[i] <deletetime' then
output "incorrect" and stop. Otherwise, push the

triple (i,k,currenttime) onto ddetestack. Next, let in-
serttime[i]---'absent" and let keyvalue[i]-"absent" and
process the next priority queue operation.

In the second phase of the algorithm we operate
on the items which have been inserted but have never
been deleted.

Scan the array inserttim¢ and for each item number
for which inserttime[il_"absent" construct an ordered

triple (i,keyvalue[i],inserttime[i]). Call this set of or-
dered triples remainders.

Use a bucket sort to sort the triples in remainders by
their time-stamps, i.e., the third element of the ordered
triple.

Merge the triples in remainders together with the triples
in deletestack so that they are all ordered by their
time-stamps, i.e., the third element of the ordered
triple.

Scan the combined triples to determine if there exist

two triples which satisfy the fol]owlng: inserttime[i]<
deletetime' and (i,keyvalue[i])_(i',k'); where one triple
is from remainders and has the form (i,keyvalue[i],
inserttime[i]) and where the other triple is from deletes-
tack and has the form (i',k',deletetime');

If these two triples exist then output "incorrect" and
stop. Otherwise output "correct" and stop.

Theorem 7.1 The algorithm for answer validation of
the priority queue abstract data type is correct.

Proof: Clearly the algorithm for answer validation
always terminates. We must show that the algorithm
outputs "correct" i.ff the operations together with ar-
guments and supposed answers are correct. Because of
space ]imitations we will only give a proof for the more
difficult heJr of this it" statement. We shall use a proof
by contradiction. Assume that the sequence of opera-
tions, arguments and supposed answers is considered
correct by the algorithm but actus]Jy is incorrect. The
use of the array inserttime and the symbol "absent s
assures that no item is deleted when it is absent or in-

serted when it is already present. The use of the array
keyvalue assures that items do not change keyvalue
when they are present in the data type set. There is
only one remaining way in which a sequence can be
incorrect. This occurs when an ordered pair is deleted
by a deletemin operation, however, it does not really
have the smallest key value.

This means, there exist ordered pairs (it,k1) and
(i2,kz) such that (it,kl)>(i2,k2) and (it,k1) is deleted

while (i2,i2) is present in the data type set. In addi.
tlon, we may specify that (il,kt) is the largest ordered
pair deleted while (i2,kr) is present. I,¢t ins1 be the
time that 11 was inserted and let dell be the time that
il was deleted. Let insz be the tlme that i2 Was in.

serted and let del2 be the time that i2 was deleted (if
it was deleted). There are two cases.

Case 1: Suppose that (i2,k3) is ultimately deleted.

We know that (il,kl)>(i2,k:) by assumption, del2 >dell
since item i2 is deleted aft¢, item i_. ins2<delz since
item i2 was present when item il was ddeted.

Consider the situation when item i_ is deleted with
a deletemin operation. The ordered triple for item it

must appear in deletestack just before the processing
of the i2 deletion operation. This follows because the
triple for item il can only be removed from deletesta&

by a larger element and yet (it,k1) refers to the largest
ordered pair deleted while (i2,k_) was present. Now,
since (it,kl)>(i_,k:) the ordered triple for item ii will
remain in deletestack even after deletestsck is popped
during the processing of the deletemin operation for

item i2. Suppose the top of deletestack is (ia,k3,dels)
after the popping.

It is easy to show that the time-stamps on deletes-
tack are monotonically ordered with the largest time-
stamp at the top. For this reason we know that
dels>_delt. We noted earlier that delt>ins2. But if
ins2<dds then the algorithm outputs "incorrect" when
it processes the deletemin operation. This contradicts
our assumption that the sequence of operations, ar-
guments and supposed answers was considered correct
by the algorithm.

Case 2: Suppose the ordered pair (i2,k2) is never
deleted. In the second phase of the algorithm the or-
dered triple (i_,k2,ins2) is constructed and is compared
against the ordered triples in deletestack.

The same argument that was used in case 1 above
can be used to show that the test performed in the
second phase of the algorithm would detect a problem
and cause "incorrect" to be output. This contradicts
our assumption that the sequence of operations, argu-
ments and supposed answers was considered correct by
the algorithm. Since both cases lead to a contradiction
our proof is comp]ete. !

Theorem 7.2 The answer" validation algorithm foe pt'i.
ori_y queue has a ¢ime complezity of O(n} /or procesJ-
ing a sequence of O(n) operations.

Proof: We first analyse phase one of the algorithm.
Note, there is a constant amount of work done for pro-
cessing each single operation if we exclude the cost of
popping the deletestaek. Interestingly, popping the
deletestack can take O(n) time for the processing of
a single operation. Luckily, the total amortized com-
phxity for popping the deletestack while processing a
sequence of O(n) operations is still only O(n). This
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is true because each item which is inserted and later

deleted is placed on deletestack and is popped at most
once.

We now consider phase two. The cost of array
scanning and constructing the triples is O(n). The
cost of the bucket sort is O(n) and the cost of the
merge is aLso O(n). The final test can be implemented
with a simple scan with a complexity of O(n). Hence
the overall complexity is O(n) |

We have solved the answer-valldation problem for
abstract data structures that support the following set
of operations: member, insert, delete, deletemin, rain,

.. deletemax, and max. The algorithm used to solve this
problem is intricate but effclent. It requires only O(n)
time to process O(n) operations. A detailed de.scrip-

: tion of our solution, however, is beyond the scope of
2- this version of the paper.

u

8 Conclusions

The results reported in this paper significantly gen-
eralize the applicabiLity of the certificatlon-trail tech-
nique. In our previously reported work on certification

trails [II], we had to customize each algorithm appli-
cation, but we have now developed trails appropriate
to wide classes of algorithms. These certification trails
are based on common data-structure operations such
as those carried out using balanced binary trees and
heaps. Any algorithm using these sets of operations
can therefore employ the certification trail method to
achieve software fault tolerance. To express the full
generality of these ideas, we have provided construc-
tions of traiLs for abstract data types such as priority
queues and union-find structures. These trails are al>-
pllcable to any data-structure implementation of the
abstract data type. These ideas lead naturally to mon-
itors for data-structure operations. We are currently
working on an experimental evaluation of the approach
and initial results are promising.
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